Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Az elektrosztatikus mozgatás Székely Vladimír Mizsei.

Hasonló előadás


Az előadások a következő témára: "Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Az elektrosztatikus mozgatás Székely Vladimír Mizsei."— Előadás másolata:

1 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke http://www.eet.bme.hu Az elektrosztatikus mozgatás Székely Vladimír Mizsei - Székely - Zólomy: Integrált mikrorendszerek

2 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 2 Az elektrosztatikus erőhatás

3 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 3 Az elektrosztatikus erőhatás Példa Számítsuk ki egy síkkondenzátornak tekinthető mikroszerkezet két elektródája közötti erőhatást! Az elektródák felülete A=0,01 mm 2, távolságuk s=2  m, a feszültség 100V. A méretcsökkentéssel az elektrosztatikus erőhatás egyre hatékonyabbá válik!

4 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 4 A fésűs meghajtó Nézzük meg, hogy mi a legcélszerűbb kialakítása az elektrosztatikus mozgató szerkezetnek! Céljaink: nagy erőhatást szeretnénk, tehát dC/dx nagy legyen, hosszabb elmozdulásnál is állandó erőt szeretnénk, dC/dx tehát ne változzék, miközben a mozgó elektróda elmozdul.

5 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 5 A fésűs meghajtó

6 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 6 A fésűs meghajtó

7 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 7

8 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 8

9 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 9 A fésűs meghajtó - az erőhatás

10 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 10 A fésűs meghajtó - példa A 2. poli vastagsága w = 2  m. A fogak hosszúsága 40  m, szélessége 3  m, a légrés szélessége s = 3  m. A rugó-szalagok hosszúsága 150  m, szélességük 2  m. A fésűfogak száma 25, tehát N = 50. N/V 2, 1V hatása Se = 0,71 m/N m/V 2

11 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 11

12 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 12

13 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 13 A rugóállandó megállapításának másik útja lehet a rezonancia frekvenciából való visszaszámolás. A mért rezonancia frekvencia f 0 = 20 kHz volt. A mozgórész teljes tömegét a geometriai adatokból és a szilícium sűrűségéből számolhatjuk ki. Ez a számítás a kg eredményre vezetett. A frekvenciát az alábbi képlet adja: m/N

14 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 14

15 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 15 A DMD eszköz vizsgálata DMD = Digital Micromirror Device

16 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 16 A DMD eszköz vizsgálata A működési elv Árnyalatok: impulzus szélesség moduláció Színes kép: forgó RGB tárcsa

17 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 17 A DMD eszköz vizsgálata Számoljunk! Mozgókép, villódzásmentes megjelenítés: 50 kép/s, 20 ms/kép a vezérlő impulzus szélességének lépése: 64 szürkeárnyalat, 20/64 = 0,31 ms Ugyanez színes képnél: 3x50=150 kép/s, 0,1 ms lépés A tükör átbillenése 20-30  s lehet! Hányszor billen? 150/sec, 540 000/óra, kb. 800 000 000 /év !

18 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 18 A DMD eszköz vizsgálata Torziós függesztés, a tükör nélkül A felépítés Pl. 20x20 um tükrök

19 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 19 A DMD eszköz vizsgálata Számítások 

20 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 20 A DMD eszköz vizsgálata Példa  x 1 = 10  m x 2 = 20  m w = 40  m d o = 2  m U = 20 V. x a = 15  m C o = 1,77 fF M = 2,64  10 -12 [mN]

21 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 21 A DMD eszköz vizsgálata M = 2,64  10 -12 [mN] A visszatérítő nyomaték

22 Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 22 A DMD eszköz vizsgálata A billenési idő becslése Egyszerűsítés: M átl = 10 -12 Nm  = M átl /  = 10 -12 /5.79  10 -22 = 1,73  10 9 s -2  =15 o = 0,26 rad d=1  m,  =2,7 kg/dm 3


Letölteni ppt "Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Az elektrosztatikus mozgatás Székely Vladimír Mizsei."

Hasonló előadás


Google Hirdetések