Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
1
Gazdaságstatisztika 12. előadás
2
Gazdaságstatisztika VALÓSZÍNŰSÉGI VÁLTOZÓ, ELMÉLETI ELOSZLÁSOK
Valószínűségi változók jellemzői
3
Valószínűségi változó várható értéke
Diszkrét eset Legyenek a valószínűségi változó lehetséges értékei Ekkor a értéket várható értékének nevezzük (feltéve, hogy a sor konvergens). Folytonos eset Legyen a folytonos valószínűségi változó sűrűségfüggvénye az függvény. Ekkor várható értéke: (feltéve, hogy ). A várható értékét általában vel vagy vel jelöljük. Gazdaságstatisztika
4
Valószínűségi változó várható értéke
Megjegyzés Ez egy definíció A várható érték nem biztos, hogy a valószínűségi változó azon értéke, melyet a legnagyobb valószínűséggel vesz fel, lehet, hogy nem is eleme a valószínűségi változó értékkészletének. Pl. kockadobás várható értéke. A várható érték néhány tulajdonsága Ha konstans, akkor Ha várható értéke létezik és egy konstans, akkor Ha a valószínűségi változóknak létezik várható értékük, akkor Gazdaságstatisztika
5
Valószínűségi változó varianciája és szórása
A várható érték önmagában nem elegendő, mert nem nyújt információt arról, hogy a valószínűségi változó lehetséges értékei hogyan szóródnak a várható érték körül. Ha és létezik, akkor az mennyiséget a valószínűségi változó szórásnégyzetének, vagy varianciájának nevezzük és vel jelöljük. A variancia a várható értéktől vett eltérés négyzetének várható értéke. A variancia pozitív négyzetgyökét szórásnak nevezzük és vel jelöljük: Gazdaságstatisztika
6
Valószínűségi változó varianciája és szórása
A várható érték tulajdonságainak felhasználásával a variancia “egyszerűsítése”: A variancia néhány további tulajdonsága Ha létezik és a és b két tetszőleges valós szám, akkor Ha a valószínűségi változók páronként függetlenek és szórásaik léteznek, akkor Gazdaságstatisztika
7
Példa Határozzuk meg két szabályos kockával dobás esetén a dobott számok összegének várható értékét, szórását és annak a valószínűségét, hogy a dobott számok összege 4-nél nagyobb, de kisebb mint 9! k pk F(k) 2 1/36 0 3 2/36 1/36 4 3/36 3/36 5 4/36 6/36 6 5/36 10/36 7 6/36 15/36 8 5/36 21/36 : : : 12 1/36 35/36 Gazdaságstatisztika
8
Gazdaságstatisztika VALÓSZÍNŰSÉGI VÁLTOZÓ, ELMÉLETI ELOSZLÁSOK
Diszkrét elméleti eloszlások
9
Számunkra fontos diszkrét elméleti eloszlások
Elméletileg végtelen sok diszkrét eloszlástípus van. A műszaki, gazdasági gyakorlatban azonban viszonylag kis számú diszkért valószínűségeloszlás-típus fordul elő. Ezek közül a legfontosabbak a következők: Bernoulli eloszlás Diszkrét egyenletes eloszlás Binomiális eloszlás Poisson eloszlás Hipergeometrikus eloszlás Gazdaságstatisztika
10
Bernoulli-eloszlás (kiegészítő anyag)
A valószínűségi változó p-paraméterű Bernoulli-eloszlású, ha lehetséges értékei 0 és 1, és , , ahol Várható érték: Szórás: Példa Legyen az A esemény bekövetkezésének valószínűsége P(A)=p, Legyen Ekkor egy p= P(A) paraméterű Bernoulli eloszlású valószínűségi váltózó. Gazdaságstatisztika
11
A Bernoulli család - Jacob (kiegészítő anyag)
Sok terület Matematika Fizika Közgazdaságtan Alkalmazott tudományok Gazdaságstatisztika
12
Diszkrét egyenletes eloszlás
A valószínűségi változó egyenletes eloszlású, ha véges sok értéket vehet fel és ezek egyenlő valószínűségűek. Várható érték: Szórásnégyzet: A gyakorlatban leginkább a szerencsejátékokkal kapcsolatban találkozhatunk vele. Pl. kockadobás, kártyahúzás Gazdaságstatisztika
13
Binomiális eloszlás A valószínűségi változó binomiális eloszlású az n, p paraméterekkel, ha Várható érték: Szórásnégyzet: Háttér Legyen A egy esemény, s végezzünk független kísérleteket n-szer. Legyen A bekövetkezéseinek száma. Ekkor binomiális eloszlású az n és p=P(A) paraméterekkel. A binomiális eloszlást a gyakorlatban elsősorban a visszatevéses mintavétel során alkalmazzuk. Ha n=1, akkor a binomiális eloszlás a Bernoulli eloszlásba megy át. Azaz a Bernoulli eloszlás a binomiális eloszlás egy speciális esete. Gazdaságstatisztika
14
Példa (*) Egy gépgyárban készített tengelyekkel kapcsolatban az a tapasztalat, hogy 5%-uk nem felel meg a minőségi elvárásoknak. Mekkora a valószínűsége annak, hogy véletlenül kiválasztott 5 tengely közül a.) mindegyik megfelel a minőségi elvárásoknak? b.) egyik sem felel meg a minőségi elvárásoknak? c.) legalább 4 megfelel a minőségi elvárásoknak? Gazdaságstatisztika
15
Példa (*) - megoldás Jelentse a nem megfelelő termékek számát a kiválasztott 5 termékből binomiális eloszlású. 5% nem felel meg => a.) mindegyik megfelel a minőségi elvárásoknak 0 db nem megfelelő van 0,7738 annak a valószínűsége, hogy a kiválasztott 5 tengely közül mindegyik megfelel a minőségi elvárásoknak. b.) egyik sem felel meg a minőségi elvárásoknak Közel 0 annak a valószínűsége, hogy a kiválasztott 5 tengely közül egyik sem felel meg az elvárásoknak. c.) legalább 4 megfelel a minőségi elvárásoknak legfeljebb 1 nem felel meg a minőségi elvárásoknak 0,9774 annak a valószínűsége, hogy a kiválasztott 5 tengely közül legalább 4 megfelel a minőségi elvárásoknak. Gazdaságstatisztika
16
Poisson-eloszlás A valószínűségi változó Poisson-eloszlású a paraméterrel, ha Várható érték: Szórásnégyzet: Háttér Nagy gyakorlati jelentőségű diszkrét eloszlás Ritkán bekövetkező esemény bekövetkezéseinek száma ezzel az eloszlással írható le Az egyenesen, síkon, térben véletlenszerűen elhelyezkedő pontok esetén egy adott tartományba eső pontok száma, vagy a véletlenszerű időpontokban bekövetkező eseményeknél adott időtartam alatt bekövetkező események száma igen gyakran Poisson-eloszlású. Gazdaságstatisztika
17
Siméon Poisson Siméon Poisson (1781-1840)
Francia matematikus és fizikus Lagrange és Laplace tanítványa Munkássága nagyon sokoldalú, tisztán elméleti. (Határozott integrálok, Fourier sorok, valószínűségszámítás) Gazdaságstatisztika
18
A Poisson- és a binomiális eloszlás kapcsolata
Legyen A egy esemény, és legyen A bekövetkezéseinek száma n megfigyelésből és p=P(A). Ekkor tudjuk, hogy binomiális eloszlású az n, p paraméterekkel, tudjuk továbbá, hogy Legyen rögzítettet, pozitív szám. Az A esemény n megfigyelésből várhatóan ennyiszer következik be. Ha n nő, akkor csökken, azaz A bekövetkezési valószínűsége csökken. Belátható, hogy Következmény Ha a valószínűségi változó binomiális eloszlású az n, p paraméterekkel és n elég nagy és p kicsi, akkor a binomiális eloszlást a = np paraméterű Poisson-eloszlással közelíthetjük. Gazdaságstatisztika
19
Példa (*) Egy mobilszolgáltatónál elvégzett vizsgálatok azt mutatták, hogy 200 nap alatt átlagosan 40 alkalommal történik váratlan kimaradás a szolgáltatásban. Mekkora a valószínűsége annak, hogy 10 nap alatt a.) 1 kimaradás történik a szolgáltatásban? b.) történik kimaradás a szolgáltatásban? c.) legfeljebb 1 kimaradás történik a szolgáltatásban? Gazdaságstatisztika
20
Példa (*) - megoldás Mivel 200 nap alatt átlagosan 40 alkalommal történik szolgáltatás-kimaradás ezért 10 nap alatt várhatóan 2 alkalommal történik szolgáltatás-kimaradás. (p=10/200 = 0,05 a szolgáltatás-kimaradás valószínűsége.) Ez alapján a 10 nap alatt bekövetkező szolgáltatás-kimaradások számáról feltételezhetjük, hogy Poisson-eloszlású valószínűségi változó várható értékkel. a.) 1 kimaradás történik a szolgáltatásban (10 nap alatt)? 0,2707 a valószínűsége annak, hogy 10 nap alatt 1 szolgáltatás-kimaradás történik. b.) történik kimaradás a szolgáltatásban (10 nap alatt)? 0,8647 a valószínűsége annak, hogy 10 nap alatt történik szolgáltatás-kimaradás. Gazdaságstatisztika
21
Példa (*) - megoldás c.) legfeljebb 1 kimaradás történik a szolgáltatásban (10 nap alatt)? 0,4060 a valószínűsége annak, hogy 10 nap alatt legfeljebb 1 szolgáltatás-kimaradás történik. Megjegyzés A feladat az n=40, p=0,05 paraméterű binomiális eloszlás felhasználásával is megoldható Gazdaságstatisztika
22
Gazdaságstatisztika VALÓSZÍNŰSÉGI VÁLTOZÓ, ELMÉLETI ELOSZLÁSOK
Folytonos elméleti eloszlások
23
Számunkra fontos folytonos elméleti eloszlások
A műszaki, gazdasági gyakorlatban a következő folytonos elméleti eloszlások nagy jelentőséggel bírnak. Folytonos egyenletes eloszlás Exponenciális eloszlás Normális (Gauss) eloszlás Gazdaságstatisztika
24
Folytonos egyenletes eloszlás
A valószínűségi változó folytonos egyenletes eloszlású az (a,b) intervallumon, ha f sűrűségfüggvénye: Várható érték: Szórás: Eloszlásfüggvény: Gazdaságstatisztika
25
Exponenciális eloszlás
A valószínűségi változó paraméterű exponenciális eloszlású, ha f sűrűségfüggvénye: Várható érték: Szórás: Eloszlásfüggvény: Háttér Exponenciális eloszlás leginkább bizonyos véletlen hosszúságú időtartamok eloszlásaként lép fel. Exponenciális eloszlással írható le például egy olyan berendezésnek ill. alkatrésznek az élettartama, hibamentes működési ideje, melynek tönkremenetelét nem kopás vagy természetes elhasználódás okozza, hanem váratlan törés szakadás illetve egyéb véletlen ok. Gazdaságstatisztika
26
Példa (*) Egy fodrászatban a vendégek által várakozással eltöltött időről kimutatták, hogy exponenciális eloszlású. További vizsgálatok azt mutatták, hogy az átlagos várakozási idő 20 perc. Mekkora a valószínűsége annak, hogy egy vendég a.) 10 percnél rövidebb ideig várakozik? b.) pontosan 5 percig várakozik? c.) 10 percnél hosszabb, de 20 percnél rövidebb ideig várakozik? Gazdaságstatisztika
27
Példa (*) - megoldás Legyen a valószínűségi változó a várakozással eltöltött idő. Az átlagos várakozási idő 20 perc, ezért perc. Tudjuk, hogy , így /perc. a.) 10-percnél rövidebb ideig várakozik? 0,3935 a valószínűsége annak, hogy egy vendég 10 percnél rövidebb ideig várakozik. b.) pontosan 5 percig várakozik? 0 a valószínűsége annak, hogy egy vendég pontosan 5 percig várakozik. c.) 10 percnél hosszabb, de 20 percnél rövidebb ideig várakozik? 0,2386 a valószínűsége annak, hogy egy vendég 10 percnél hosszabb, de 20 percnél rövidebb ideig várakozik Gazdaságstatisztika
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.