Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Gazdaságstatisztika 22. előadás

Hasonló előadás


Az előadások a következő témára: "Gazdaságstatisztika 22. előadás"— Előadás másolata:

1 Gazdaságstatisztika 22. előadás
GYAKORLÓ FELADATOK A STATISZTIKAI PRÓBÁK ÉS KORRELÁCIÓ- ÉS REGRESSZIÓSZÁMÍTÁS TÉMAKÖRÉBŐL

2 FELADATOK A KORRELÁCIÓ- ÉS REGRESSZIÓSZÁMÍTÁS TÉMAKÖRÉBŐL
Gazdaságstatisztika FELADATOK A KORRELÁCIÓ- ÉS REGRESSZIÓSZÁMÍTÁS TÉMAKÖRÉBŐL

3 1. Feladat Egy vállalat havi árbevétele (x) és havi üzleti eredménye (y) közötti kapcsolat egy 10 elemű minta alapján az y = -9+0,1x lineáris regressziós függvénnyel írható le. A mintában az árbevétel korrigált empirikus szórása 9,8 millió Ft, az üzleti eredményé 1,1 millió Ft. a.) Értelmezze a regressziós egyenes meredekségét! b.) Határozza meg az árbevétel és az üzleti eredmény közötti determinációs együtthatót, és értelmezze az eredményt! Gazdaságstatisztika

4 1. Feladat - megoldás a.) A regressziós egyenes: y = -9+0,1x. Ennek meredeksége 0,1. Ez azt jeleneti, hogy az árbevétel egységnyi növekedése az üzleti eredmény átlagosan 0,1 egységnyi növekedését vonja maga után. b.) Az árbevétel (x) és az üzleti eredmény (y) közötti determinációs együttható meghatározása Egyrészt a determinációs együttható: Másrészt a regressziós egyenes meredeksége: Ez utóbbi két összefüggésből a determinációs együttható: Gazdaságstatisztika

5 1. Feladat - megoldás A megadott empirikus szórások felhasználásával és meghatározható: A determinációs együttható: A determinációs együttható megadja, hogy az eredményváltozó (y) varianciáját mekkora hányadban magyarázza a magyarázó változó (x). Esetünkben ez azt jelenti, hogy az üzleti eredmény varianciáját (változékonyságát) 79,37%-ban magyarázza az árbevétel . Gazdaságstatisztika

6 2. Feladat Teherhajók tömege (x) és kirakodási idejük (y) között a tapasztalati lineáris korrelációs együttható értéke egy 10 elemű minta alapján 0,87. A mintában a hajótömegek korrigált tapasztalati szórása 7,2 tonna, a kirakodási időé 2,1 óra. a.) Hány %-ban magyarázza a kirakodási idő varianciáját a teherhajók tömege? b.) Adja meg a kirakodási idő és a hajótömeg közötti regressziós egyenes meredekségét! Gazdaságstatisztika

7 2. Feladat - megoldás a.) A determinációs együttható megadja, hogy az eredményváltozó (y) varianciáját mekkora hányadban magyarázza a magyarázó változó (x). Esetünkben a korrelációs együttható értéke 0,87. Ennek négyzete 0,7569 a determinációs együttható értéke, azaz a kirakodási idő varianciájának 75,69%-át magyarázza a teherhajók tömege. b.) A regressziós egyenes meredekségének meghatározása: Egyrészt a regressziós egyenes meredeksége: Másrészt a korrelációs együttható: Ez utóbbi két összefüggésből a regressziós egyenes meredekségére: Gazdaságstatisztika

8 2. Feladat - megoldás A megadott empirikus szórások felhasználásával és meghatározható: A regressziós egyenes meredekségéről tudjuk, hogy A teherhajók tömegének 1 egységnyi növekedése a kirakodási idő átlagosan 0,254 egységnyi növekedését eredményezi. Gazdaságstatisztika

9 FELADATOK A NEMPARAMÉTERES PRÓBÁK TÉMAKÖRÉBŐL
Gazdaságstatisztika FELADATOK A NEMPARAMÉTERES PRÓBÁK TÉMAKÖRÉBŐL

10 1. Feladat Egy ipari parkban az elmúlt 70 évben az évente bekövetkező áramkimaradások gyakorisága az alábbi táblázat szerint alakult. 5%-os szignifikancia szinten elfogadható-e az a feltételezés, hogy az áramkimaradások száma Poisson-eloszlású valószínűségi változó? Áramkimaradások száma (évente): 1 2 3 4 5 6 7 7-nél több Évek száma: 16 23 15 Gazdaságstatisztika

11 1. Feladat - megoldás A feladat szövege alapján a következő hipotézisek fogalmazhatók meg H0: az áramkimaradások éves száma Poisson-eloszlást követ H1: az áramkimaradások éves száma nem Poisson-eloszlást követ A feltételezett eloszlás (Poisson-eloszlás) paramétere nem ismert, ezért becsléses illeszkedésvizsgálatot hajtunk végre. Gazdaságstatisztika

12 Hipotézisvizsgálatok
Nemparaméteres próbák Paraméteres próbák Többmintás próbák Illeszkedésvizsgálat χ2-próbával H0: F=F0 Több normális eloszlású valószínűségi változó várható értékeire Több normális eloszlású valószínűségi változó szórásnégyzeteire Homogenitásvizsgálat χ2-próbával H0: F(ξ)=G(η) Variancia analízis H0: μ1=μ2=…=μn σ1=σ2=…=σn Cochran-féle C próba H0: σ1=σ2=…=σr n1=n2=…=nr=n Függetlenségvizsgálat χ2-próbával H0: ξ és η független Egymintás próbák Kétmintás próbák Normális eloszlású valószínűségi változó várható értékére Normális eloszlású valószínűségi változó szórásnégyzetére Két normális eloszlású valószínűségi változó várható értékeire Két normális eloszlású valószínűségi változó szórásnégyzeteire Egymintás z-próba H0: μ=μ0 σ ismert,vagy n>30 χ2-próba a szórásnégyzetre H0: σ2=σ20 Független minták esetén Páros minták esetén F-próba H0: σ21 =σ22 Egymintás t-próba H0: μ=μ0 σ ismeretlen Kétmintás z-próba H0: μ1=μ2 σ1, σ2 ismert, vagy n1,n2>30 Páros t-próba H0: μ1-μ2=d0 Kétmintás t-próba H0: μ1=μ2 σ1,σ2 ismeretlen, σ1 = σ2

13 1. Feladat - megoldás A megoldás menete
Tudjuk, hogy a nullhipotézis teljesülése esetén az áramkimaradások éves száma Poisson-eloszlású valószínűségi változónak tekinthető. A mintából becslést adunk az eloszlás paraméterére. Meghatározzuk, hogy az áramkimaradások száma a feladatban megadott értékeket mekkora valószínűséggel veszi fel. Kiszámítjuk az áramkimaradások számának elméleti gyakoriságait. Az elméleti és tapasztalati gyakoriságok ismeretében – a khi-négyzet próba alkalmazásával – illeszkedésvizsgálatot hajtunk végre. Gazdaságstatisztika

14 1. Feladat - megoldás Jelölje az áramkimaradások éves számát, mint valószínűségi változót. Ha a nullhipotézis teljesül, akkor paraméterű Poisson-eloszlású. A paraméter (maximum likelihood) becslése a mintaátlag: Az elméleti gyakoriságok meghatározásához a következő valószínűségeket kell kiszámítanunk Áramkimaradások száma: 1 2 3 4 5 6 7 7-nél több Évek száma: 16 23 15 Gazdaságstatisztika

15 1. Feladat - megoldás A valószínűségek ismeretében az elméleti gyakoriságok az összefüggés alapján számíthatók, ahol N=70 a minta elemszáma. A következő táblázat a próba végrehajtásához szükséges tapasztalati és kiszámított elméleti gyakoriságokat tartalmazza. k 6 0,1108 7,7562 1 16 0,2438 17,0637 2 23 0,2681 18,7701 3 15 0,1966 13,7647 4 7 0,1082 7,5706 5 0,0476 3,3311 0,0174 1,2214 0,0055 0,3839 7-nél több 0,0020 0,1384 Gazdaságstatisztika

16 1. Feladat - megoldás A próba végrehajtása
Tesztstatisztika kiszámítása: A kritikus érték meghatározása A szabadságfok: DF = r-l-1 = = 7 (r=9, l=1, mert 1 paramétert becsültünk.) és a szabadságfok ismeretében a khi-négyzet eloszlás táblázatából: Döntés , ezért a nullhipotézist 5%-os szignifikancia szinten elfogadjuk. Gazdaságstatisztika

17 Asztallap vastagsága (d)
2. Feladat Egy faipari üzemben a méretre gyártott asztallapok vastagságát vizsgálták. 200 asztallap vastagságát megmérve az adatokat az alábbi táblázatban rögzítették. 5%-os szignifikancia szinten elfogadható-e az a feltételezés, hogy az asztallapok vastagsága normális eloszlású valószínűségi változó 50,2mm várható értékkel és 1,3mm szórással? Asztallap vastagsága (d) (mm) Asztallapok száma (darab) d < 47 3 47 ≤ d < 49 31 49 ≤ d < 51 105 51 ≤ d < 53 56 53 ≤ d 5 Gazdaságstatisztika

18 2. Feladat - megoldás A feladat szövege alapján a következő hipotézisek fogalmazhatók meg. H0: az asztallapok vastagsága 50,2mm várható értékű, 1,3mm szórású normális eloszlást követ H1: az asztallapok vastagsága nem 50,2mm várható értékű, 1,3mm szórású normális eloszlást követ Mivel ismertek a feltételezett eloszlás elméleti paraméterei, ezért tiszta illeszkedésvizsgálatot hajtunk végre. Gazdaságstatisztika

19 Hipotézisvizsgálatok
Nemparaméteres próbák Paraméteres próbák Többmintás próbák Illeszkedésvizsgálat χ2-próbával H0: F=F0 Több normális eloszlású valószínűségi változó várható értékeire Több normális eloszlású valószínűségi változó szórásnégyzeteire Homogenitásvizsgálat χ2-próbával H0: F(ξ)=G(η) Variancia analízis H0: μ1=μ2=…=μn σ1=σ2=…=σn Cochran-féle C próba H0: σ1=σ2=…=σr n1=n2=…=nr=n Függetlenségvizsgálat χ2-próbával H0: ξ és η független Egymintás próbák Kétmintás próbák Normális eloszlású valószínűségi változó várható értékére Normális eloszlású valószínűségi változó szórásnégyzetére Két normális eloszlású valószínűségi változó várható értékeire Két normális eloszlású valószínűségi változó szórásnégyzeteire Egymintás z-próba H0: μ=μ0 σ ismert,vagy n>30 χ2-próba a szórásnégyzetre H0: σ2=σ20 Független minták esetén Páros minták esetén F-próba H0: σ21 =σ22 Egymintás t-próba H0: μ=μ0 σ ismeretlen Kétmintás z-próba H0: μ1=μ2 σ1, σ2 ismert, vagy n1,n2>30 Páros t-próba H0: μ1-μ2=d0 Kétmintás t-próba H0: μ1=μ2 σ1,σ2 ismeretlen, σ1 = σ2

20 Asztallap vastagsága (d)
2. Feladat - megoldás A feladat megoldásához meg kell határoznunk az asztallap vastagságának a megadott kategóriákba esési elméleti gyakoriságait. A nullhipotézis teljesülése esetén az asztallap vastagság megadott kategóriákba esési valószínűségeit a , paraméterű normális eloszlásfüggvény segítségével számíthatjuk ki. E valószínűségek ismeretében a megadott kategóriákba esési elméleti gyakoriságok kiszámíthatóak. A megadott kategóriákba esési valószínűségek meghatározása Jelölje az asztallapok vastagságát, mint valószínűségi változót. A következő valószínűségeket kell meghatároznunk: Asztallap vastagsága (d) (mm) d < 47 47 ≤ d < 49 49 ≤ d < 51 51 ≤ d < 53 53 ≤ d Gazdaságstatisztika

21 2. Feladat - megoldás A , paraméterű normális eloszlás helyett a standard normális eloszlásfüggvénnyel számolunk Gazdaságstatisztika

22 Asztallap vastagsága (d)
2. Feladat - megoldás A valószínűségek ismeretében az elméleti gyakoriságok az összefüggéssel meghatározhatóak, ahol N=200 a minta elemszáma Megjegyzés: Próba végrehajtása Tesztstatisztika kiszámítása: a kategóriák száma Asztallap vastagsága (d) (mm) d < 47 3 0,007 1,3834 47 ≤ d < 49 31 0,1711 34,2133 49 ≤ d < 51 105 0,5528 110,5732 51 ≤ d < 53 56 0,2534 50,7049 53 ≤ d 5 0,0156 3,1252 Gazdaságstatisztika

23 2. Feladat - megoldás A kritikus érték meghatározása Döntés
A szabadságfok: DF = r-l-1 = = 4 (l=0, mert nem becsültünk egyetlen paramétert sem) és a szabadságfok ismeretében a khi-négyzet eloszlás táblázatából Döntés , ezért a nullhipotézist elfogdajuk, azaz 5%-os szignifikancia szinten elfogadható az a feltételezés, hogy az asztallapok vastagsága normális eloszlású valószínűségi változó 50,2mm várható értékkel és 1,3mm szórással. Gazdaságstatisztika

24 3. Feladat A csokoládé, a vanília és az eper-fagylaltok iránti preferenciát vizsgálták kisiskolások körében. 4 korcsoportban, összesen 289 kisiskolástól kérdezték meg, hogy melyik fagylaltot kedveli a leginkább. A felmérés eredményét a következő táblázat összegzi. 5%-os szignifikancia szinten elfogadható-e az a feltételezés, hogy a fagylaltok iránti preferencia független a kisiskolás korától? 1. osztály 2. osztály 3. osztály 4. osztály Csokoládé 26 62 48 12 Vanília 8 18 6 Eper 16 42 28 11 Gazdaságstatisztika

25 Hipotézisvizsgálatok
Nemparaméteres próbák Paraméteres próbák Többmintás próbák Illeszkedésvizsgálat χ2-próbával H0: F=F0 Több normális eloszlású valószínűségi változó várható értékeire Több normális eloszlású valószínűségi változó szórásnégyzeteire Homogenitásvizsgálat χ2-próbával H0: F(ξ)=G(η) Variancia analízis H0: μ1=μ2=…=μn σ1=σ2=…=σn Cochran-féle C próba H0: σ1=σ2=…=σr n1=n2=…=nr=n Függetlenségvizsgálat χ2-próbával H0: ξ és η független Egymintás próbák Kétmintás próbák Normális eloszlású valószínűségi változó várható értékére Normális eloszlású valószínűségi változó szórásnégyzetére Két normális eloszlású valószínűségi változó várható értékeire Két normális eloszlású valószínűségi változó szórásnégyzeteire Egymintás z-próba H0: μ=μ0 σ ismert,vagy n>30 χ2-próba a szórásnégyzetre H0: σ2=σ20 Független minták esetén Páros minták esetén F-próba H0: σ21 =σ22 Egymintás t-próba H0: μ=μ0 σ ismeretlen Kétmintás z-próba H0: μ1=μ2 σ1, σ2 ismert, vagy n1,n2>30 Páros t-próba H0: μ1-μ2=d0 Kétmintás t-próba H0: μ1=μ2 σ1,σ2 ismeretlen, σ1 = σ2

26 3. Feladat - megoldás r=3; s=4; DF=(r-1)(s-1)=(3-1)(4-1)=6; =5%
A 6 szabadságfokú khi-négyzet eloszlás táblázatából az =5%-hoz tartozó érték: Döntés: χ 2sz ≤ χ20,05 =>a nullhipotézis elfogadható, a fagylaltok iránti preferencia független a kisiskolás korától. F11= 148*50/289 = 25,606 F21= 44*50/289 = 7,612 F34=97*29/289=9,734 1. osztály 2. osztály 3. osztály 4. osztály Csokoládé 26 62 48 12 148 25.606 62.478 45.066 14.851 Vanília 8 18 6 44 7.612 18.574 13.398 4.415 Eper 16 42 28 11 97 16.782 40.948 29.536 9.734 50 122 88 29 289 f1· f2· f3· f·1 f·2 f·3 f·4 Gazdaságstatisztika

27 FELADATOK A PARAMÉTERES PRÓBÁK TÉMAKÖRÉBŐL
Gazdaságstatisztika FELADATOK A PARAMÉTERES PRÓBÁK TÉMAKÖRÉBŐL

28 1. Feladat Egy fémipari üzemben a 300mm névleges átmérőjű tárcsákat az “A” és “B” jelű műszakokban gyártják. A két műszakban gyártott tárcsák átmérőjének hosszára vonatkozóan elvégzett mérések eredményeit az alábbi táblázat összegzi. (A gyártott tárcsák átmérőjének hossza normális eloszlású valószínűségi változónak tekinthető.) 5%-os szignifikancia szinten elfogadható-e az az állítás, hogy az “A” műszakban gyártott tárcsák átmérőjének várható értéke nagyobb, mint a “B” műszakban gyártottaké? "A" műszak "B" műszak Minta elemszáma 11 10 Mintából számított átlag (mm) 300,1 299,6 Tapasztalati szórásnégyzet 0,8944 0,7745 Gazdaságstatisztika

29 1. Feladat - megoldás A feladat szövege alapján a következő hipotézisek fogalmazhatók meg. H0: az “A” műszakban gyártott tárcsák átmérőjének várható értéke egyenlő a “B” műszakban gyártott tárcsák átmérőjének várható értékével. H1: az “A” műszakban gyártott tárcsák átmérőjének várható értéke nagyobb, mint a “B” műszakban gyártottaké. A tárcsák átmérőjének hossza normális eloszlású valószínűségi változó, ezért a feladatunk két normális eloszlású valószínűségi változó várható értékei egyenlőségének tesztelése. Gazdaságstatisztika

30 1. Feladat - megoldás A megoldás menete
Két normális eloszlású valószínűségi változó várható értékei egyenlőségét Kétmintás z-próbával tesztelhetjük, ha ismertek az elméleti szórások vagy a minták elemszáma nagyobb 30-nál Kétmintás t-próbával tesztelhetjük, ha az elméleti szórások ismeretlenek, de azok egyenlősége feltételezhető Esetünkben az elméleti szórások ismeretlenek és a minták elemszámai 30-nál nem nagyobbak, ezért a kétmintás z-próba nem alkalmazható F-próbát alkalmazunk az elméleti szórások egyenlőségének tesztelésére Ha az F-próba eredményeként feltételezhető az elméleti szórások egyenlősége, akkor kétmintás t-próbával teszteljük a várható értékek egyenlőségét Gazdaságstatisztika

31 Hipotézisvizsgálatok
Nemparaméteres próbák Paraméteres próbák Többmintás próbák Illeszkedésvizsgálat χ2-próbával H0: F=F0 Több normális eloszlású valószínűségi változó várható értékeire Több normális eloszlású valószínűségi változó szórásnégyzeteire Homogenitásvizsgálat χ2-próbával H0: F(ξ)=G(η) Variancia analízis H0: μ1=μ2=…=μn σ1=σ2=…=σn Cochran-féle C próba H0: σ1=σ2=…=σr n1=n2=…=nr=n Függetlenségvizsgálat χ2-próbával H0: ξ és η független Egymintás próbák Kétmintás próbák Normális eloszlású valószínűségi változó várható értékére Normális eloszlású valószínűségi változó szórásnégyzetére Két normális eloszlású valószínűségi változó várható értékeire Két normális eloszlású valószínűségi változó szórásnégyzeteire Egymintás z-próba H0: μ=μ0 σ ismert,vagy n>30 χ2-próba a szórásnégyzetre H0: σ2=σ20 Független minták esetén Páros minták esetén F-próba H0: σ21 =σ22 Egymintás t-próba H0: μ=μ0 σ ismeretlen Kétmintás z-próba H0: μ1=μ2 σ1, σ2 ismert, vagy n1,n2>30 Páros t-próba H0: μ1-μ2=d0 Kétmintás t-próba H0: μ1=μ2 σ1,σ2 ismeretlen, σ1 = σ2

32 1. Feladat - megoldás F-próba
H0: az “A” műszakban gyártott tárcsák átmérőjének szórása egyenlő a “B” műszakban gyártott tárcsák átmérőjének szórásával. H1: az “A” műszakban gyártott tárcsák átmérőjének szórása nagyobb, mint a “B” műszakban gyártottaké. Számlálóhoz tartozó szabadságfok: 11-1=10 Nevezőhöz tartozó szabadságfok: 10-1=9 ezért 5%-os szignifikancia szinten elfogadjuk az elméleti szórások egyenlőségét és a várható értékek egyenlőségét kétmintás t-pórbával teszteljük Gazdaságstatisztika

33 1. Feladat - megoldás Kétmintás t-próba
H0: az “A” műszakban gyártott tárcsák átmérőjének várható értéke egyenlő a “B” műszakban gyártott tárcsák átmérőjének várható értékével. H1: az “A” műszakban gyártott tárcsák átmérőjének várható értéke nagyobb, mint a “B” műszakban gyártottaké. Szabadságfok: DF= =19 Egyoldali próba Elfogadási tartomány: Gazdaságstatisztika

34 1. Feladat - megoldás az elfogadási tartományba esik, ezért 5%-os szignifikancia szinten elfogadjuk a nullhipotézist, azaz az “A” és “B” műszakban gyártott tárcsák átmérőjének várható értéke között nincs szignifikáns különbség. Gazdaságstatisztika

35 2. Feladat Egy palackozó üzemben az 1-es és 2-es gyártósorokon palackozott 1 liter névleges űrtartalmú üdítőitalok töltési térfogatát vizsgálták. Egy-egy mintát vettek a két soron palackozott üdítőitalokból, s a mintákból meghatározták a töltési térfogatok átlagát és tapasztalati szórásnégyzetét. Az eredményeket az alábbi táblázatban rögzítették. (A töltési térfogat normális eloszlású valószínűségi változónak tekinthető.) a. ) 5%-os szignifikancia szinten elfogadható-e az az állítás, hogy az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának várható értéke nagyobb, mint a 2-es gyártósoron palackozottaké? b.) 5%-os szignifikancia szinten elfogadható-e az az állítás, hogy az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának szórása kisebb, mint a 2-es gyártósoron palackozottaké? 1-es gyártósor 2-es gyártósor Minta elemszáma 61 Mintából számított átlag 1,02 0,98 Tapasztalati szórásnégyzet 0,045 0,05 Gazdaságstatisztika

36 2. Feladat - megoldás a.) A feladat szövege alapján a következő hipotézisek fogalmazhatók meg. H0: az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának várható értéke egyenlő a 2-es gyártósóron palackozott üdítőitalok töltési térfogatának várható értékével H1: az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának várható értéke nagyobb, mint a 2-es gyártósoron palackozottaké A töltési térfogat normális eloszlású valószínűségi változó, ezért a feladatunk két normális eloszlású valószínűségi változó várható értékei egyenlőségének tesztelése. Gazdaságstatisztika

37 2. Feladat - megoldás a.) A megoldás menete
Két normális eloszlású valószínűségi változó várható értékei egyenlőségét Kétmintás z-próbával tesztelhetjük, ha ismertek az elméleti szórások vagy a minták elemszáma nagyobb 30-nál Kétmintás t-próbával tesztelhetjük, ha az elméleti szórások ismeretlenek, de azok egyenlősége feltételezhető Esetünkben az elméleti szórások ismeretlenek és a minták elemszámai 30-nél nagyobbak, ezért a kétmintás z-próba alkalmazható Az kétmintás t-próba szintén alkalmazható, ha az elméleti szórások egyenlősége feltételezhető. Ez utóbbi feltételezést F-próbával tesztelhetjük. Gazdaságstatisztika

38 Hipotézisvizsgálatok
Nemparaméteres próbák Paraméteres próbák Többmintás próbák Illeszkedésvizsgálat χ2-próbával H0: F=F0 Több normális eloszlású valószínűségi változó várható értékeire Több normális eloszlású valószínűségi változó szórásnégyzeteire Homogenitásvizsgálat χ2-próbával H0: F(ξ)=G(η) Variancia analízis H0: μ1=μ2=…=μn σ1=σ2=…=σn Cochran-féle C próba H0: σ1=σ2=…=σr n1=n2=…=nr=n Függetlenségvizsgálat χ2-próbával H0: ξ és η független Egymintás próbák Kétmintás próbák Normális eloszlású valószínűségi változó várható értékére Normális eloszlású valószínűségi változó szórásnégyzetére Két normális eloszlású valószínűségi változó várható értékeire Két normális eloszlású valószínűségi változó szórásnégyzeteire Egymintás z-próba H0: μ=μ0 σ ismert,vagy n>30 χ2-próba a szórásnégyzetre H0: σ2=σ20 Független minták esetén Páros minták esetén F-próba H0: σ21 =σ22 Egymintás t-próba H0: μ=μ0 σ ismeretlen Kétmintás z-próba H0: μ1=μ2 σ1, σ2 ismert, vagy n1,n2>30 Páros t-próba H0: μ1-μ2=d0 Kétmintás t-próba H0: μ1=μ2 σ1,σ2 ismeretlen, σ1 = σ2

39 2. Feladat - megoldás a.) feladat megoldása kétmintás z-próbával
H0: H1: => Elfogadási tartomány: Próbastatisztika: Döntés A próbastatisztika értéke az elfogadási tartományba esik, ezért a két gyártósoron palackozott üdítőitalok várható töltési térfogatát 5%-os szignifikancia szinten egyenlőnek tekinthetjük. Nem fogadható el az az állítás, hogy az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának várható értéke nagyobb, mint a 2-es gyártósoron palackozottaké. Gazdaságstatisztika

40 2. Feladat - megoldás b.) A feladat szövege alapján a következő hipotézisek fogalmazhatók meg. H0: az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának szórása egyenlő a 2-es gyártósoron palackozott üdítőitalok töltési térfogatának szórásával H1: az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának szórása kisebb, mint a 2-es gyártósoron palackozottaké A töltési térfogat normális eloszlású valószínűségi változó, ezért a feladatunk két normális eloszlású valószínűségi változó szórásai egyenlőségének tesztelése. A szórások egyenlőségének tesztelésére F-próbát alkalmazunk. Gazdaságstatisztika

41 2. Feladat - megoldás b.) feladat megoldása F-próbával H0: H1:
ezért a próbastatisztika: A számlálóhoz tartozó szabadságfok: A nevezőhöz tartozó szabadásfok: Döntés , azaz a nullhipotézis 5%-os szignifikancia szinten elfogadható, így ezen a szignifikancia szinten elfogadható a szórások egyenlősége, s nem fogadható el az az állítás, miszerint az 1-es gyártósoron palackozott üdítőitalok szórása kisebb, mint a 2-es soron palackozottaké. Gazdaságstatisztika

42 2. Feladat - megoldás Mivel 5%-os szignifikancia szinten a szórások egyenlősége elfogadható, így az a.) feladat kétmintás t-próbával is megoldható. H0: H1: DF= =120; => Elfogadási tartomány: Próbastatisztika: Gazdaságstatisztika

43 2. Feladat - megoldás Megjegyzés Döntés
A próbastatisztika értéke az elfogadási tartományba esik, ezért a két gyártósoron palackozott üdítőitalok várható töltési térfogatát 5%-os szignifikancia szinten egyenlőnek tekinthetjük. Nem fogadható el az az állítás, hogy az 1-es gyártósoron palackozott üdítőitalok töltési térfogatának várható értéke nagyobb, mint a 2-es gyártósoron palackozottaké. Megjegyzés A kétmintás z-próbánál, valamint a kétmintás t-próbánál a próbastatisztikák és az elfogadási tartományok: A kapott értékek jól érzékeltetik, hogy a két próba végrehajtása a gyakorlat szempontjából azonos eredményt hoz. Gazdaságstatisztika

44 Elméleti feladatok Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! Mutassa be az egymintás t-próba célját, alkalmazásának feltételeit és módszerét! Ismertesse az idősorok determinisztikus modell szerinti összetevőit és additív dekompozícióját! Ismertesse az idősorok determinisztikus modell szerinti összetevőit és multiplikatív dekompozícióját! Ismertesse az empirikus regressziós egyenes meghatározásának módszerét! Ismertesse az empirikus korrelációs együttható és a regressziós egyenes összefüggését! Mutassa be az empirikus lineáris regresszió jellemzésére vonatkozó variancia analízist és értelmezze a determinációs együtthatót! Ismertesse a kétmintás t-próba célját, alkalmazásának feltételeit és módszerét! Gazdaságstatisztika


Letölteni ppt "Gazdaságstatisztika 22. előadás"

Hasonló előadás


Google Hirdetések