Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
1
III. előadás
2
Illeszkedésvizsgálat –próbával diszkrét esetben
Példa: 4 érmét 160-szor feldobva a „fej” dobások száma: fejek száma darabszám Döntsük el, hogy 95% valószínűséggel szabályosak-e az érmék?
3
Illeszkedésvizsgálat –próbával folytonos esetben
Tétel. Egy n elemű minta alapján feltehető-e, hogy az egy adott eloszlásfüggvénnyel rendelkező eloszlásból származik? Null hipotézis: : ismeretlen ? Tekintsük a következő statisztikai függvényt: , ahol - az i-edik intervallumba esés gyakorisága, - az i-edik intervallumba esés valószínűsége a feltételezett eloszlás alapján, r - a vizsgált intervallumok száma. Csak akkor alkalmazható, ha minden i esetén ! Amennyiben , akkor a null hipotézist ( az eloszlás típusára tett feltevést) elfogadjuk, egyébként elvetjük. értékét táblázatból határozhatjuk meg:
4
Illeszkedésvizsgálat –próbával folytonos esetben
Példa: Egy automata egy heti termelését kívánjuk ellenőrizni. A legyártott 1500 db alkatrészt vizsgálva, az egyik méretének az elméleti mérettől való "x" eltérését mikronban az alábbi táblázat tartalmazza. Az előzetes mérések alapján a szórás 5 mikron. Vizsgáljuk meg, hogy a hiba eloszlása normális eloszlást követ-e?
5
Lineáris korreláció és lineáris regresszió
6
A probléma felvetése r = 0,8962 y = 1,138x + 80,778
7
A korrelációs együttható
Legyenek adottak egy valószínűségi változóra mért értékek, és másik valószínűségi változóra mért értékei. Az érték párok összetartozását az azonos index jelzi. A korrelációs együttható megadja, hogy a két változó között feltételezhető-e lineáris összefüggés? Bizonyítás nélkül a korrelációs együttható: ( r ) Minél közelebb van r az 1-hez, annál szorosabb a két változó között feltételezett lineáris korreláció. Minél közelebb van r a 0-hoz, annál lazább a két változó között feltételezett lineáris kapcsolat.
8
A regressziós egyenes egyenlete
Keressük az ponthalmazt a (legkisebb négyzetek elve szerint) legjobban közelítő egyenes egyenletét, azaz azt az y = ax + b egyenletet, melyre a mért és az egyenlettel becsült értékek eltéréseinek a négyzetösszege minimális. Keressük tehát az kétváltozós függvény lokális minimumát. Erre kapjuk: és
9
A regressziós egyenes egyenlete
Így a regressziós egyenes egyenlete, a megfelelő átalakítások elvégzése után: Példa: Egy földgázmező földgázvagyonának kitermeléséről az os években a következő adatok állnak rendelkezésre: a./ Igazolja, hogy lineáris összefüggés van a kitermelt mennyiség és az év között? b./ A regressziós becslés alapján mennyi fogy el 1992, 93, 94, 95, 96, 97-ben? c./ Ha a kitermelés üteme a jelenlegi marad, várhatóan mikor fogy el a 6000 millió -re becsült földgázvagyon?
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.