Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Textúrák, világmodellek

Hasonló előadás


Az előadások a következő témára: "Textúrák, világmodellek"— Előadás másolata:

1 Textúrák, világmodellek
6. előadás Számítógépes grafika, PPKE-ITK, Benedek Csaba, 2010

2 Testek Ellenpéldák Érvényes testek: reguláris halmaz
nem lehetnek alacsony dimenziós elfajulásai minden határpont mellett van belső pont Garantáltan érvényes testet építő módszerek 2.5 dimenziós eljárások speciális felületi modellezés: B-rep Konstruktív tömörtest geometria

3 2.5 dimenziós módszerek Kihúzás: extrude Forgatás: rotate

4 Felületmodellezők Test = határfelületek gyűjteménye
Topológiai ellenőrzés (Euler tétel): csúcs + lap = él + 2

5 B-rep: Euler operátorok

6 Gyakorlati Euler operátorok
Edge split csúcs + lap = él + 2 Poligon split Élzsugorítás v. csúcspont összevonás -Edge Collapse

7 Gyakorlati Euler operátorok
Poligon kihúzás (Face extrude): ep: a poligon éleinek a száma 2ep új él, ep+1 új lap, ep új csúcs 1 eltűnő lap e’=e+2ep l’=l+ep+1-1 c’=c+ep l’+c’=l+c+2ep=e+2+2ep=e’+2

8 Poligon modellezés: téglatest

9 Poligon modellezés: 1. extruding
poligon kihúzás

10 Poligon modellezés: 2. extruding
mégegy poligon kihúzás

11 Poligon modellezés: 4. és 5. extruding
még két poligon kihúzás

12 Poligon modellezés: 6. extruding

13 Subdivision simítás

14 Konstruktív tömörtest geometria (Constuctive Solid Geometry (CSG)
Összetett testeket primitív testekből halmazműveletek (egyesítés, metszet, különbség) alkalmazásával építi fel Regularizált műveletek

15 CSG fa 15

16 Virtuális világ tárolása

17 Belső világ tárolása Geometria: pontok koordinátái
Topológia: élek-pontok; lapok-pontok;... hierarchia: objektum-lapok-élek-pontok transzformáció: lokális és világkoordináta rendszerek modellező képszintézis világ VRML, 3DS, OBJ, DXF IGES, MB, MD2,... fáljkonv 17

18 Egyszerű hierarchikus modell
Objektum obj1 szakasz1 Bezier kör Primitív point1 point1 point1 Pont point3 point4 point5 point6 18

19 Geometria kiemelése obj1 szakasz1 Bezier kör x y 19

20 Szárnyasél adatstruktúra
class BRepCore { public: void MEVVF(…); void MVE(float t, Edge& e); void MEF(Vertex& v1,Vertex& v2); void Move(Vertex& v, Vector p); }; class BRep : BRepCore { void FaceExtrude( ); void FaceSplit( ); void EdgeCollapse( ); void VertexSplit( ); él Pont +(x,y) lap 20

21 Hierarchikus színtér gráfok
Ferrari haladási transzformáció Karosszéria Kerék1 transzformáció Kerék2 transzformáció Kerék Forgatási transzformáció kerék

22 Textúra leképzés Összetett mintázatú felületek (pl perzsaszőnyeg) BRDF-leírása nehézkes bonyolult modellezés, hosszú képszintézis  Megoldás: textúra Bittérképes textúra: 2-D képet rendelünk a felülethez, a képpontok a felületelem színét tartalmazzák Procedurális textúra: generáló műveletsorral írjuk le a mintázatot

23 Textúra leképzés: anyagjellemzők változnak a felületen

24 (2D) Textúra leképzés Paraméterezés Nézeti transzformáció v (x,y,z) z
u v (x,y,z) z y x Kép (elemei a „texel”-ek) vagy függvény x = fx(u,v) y = fy(u,v) z = fz(u,v) u,v  [0,1]

25 Textúra-tér - képtér Textúra alapú leképzés: a textúra-térben levő ponthoz keresi meg a hozzá tartozó pixelt Hatékony, de nem garantálja hogy a textúra-térben kijelölt pontok a képernyőn is egyenletesen helyezkednek el („lyukas lehet a kép”) A képtér alapú leképzés: a pixelhez keresi meg a hozzá tartozó textúra elemet Vetítési transzformáció inverze! Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

26 Textúra leképzés sugárkövetésnél
Inverz paraméterezés u v (x,y,z) z y x Gömb példa: x = x0 + r cos 2u sin v y = y0 + r sin 2u sin v z = z0 + r cos v u,v  [0,1] u = 1/2 (atan2((y-y0), (x-x0)) +) v = 1/ acos( (z-z0)/r )

27 Modell-világ-képernyő transzf.
Inkrementális képszintézis Paraméterezés Modell-világ-képernyő transzf. [Xh, Yh, Zh, h] = [x,y,z,1]TC (X,Y)= [Xh/h, Yh/h] u v (x3,y3,z3) Y (u1, v1) z (X1,Y1) (x2,y2,z2) (u3, v3) (u2, v2) (X3,Y3) (x1,y1,z1) (X2,Y2) y X x

28 Lineáris interpoláció
Leképzés: 2x3 mátrix 6 egyenlet 6 ismeretlen u v u=au X+buY+cu v=av X+bvY+cv Y (X1,Y1) (u1, v1) (u3, v3) (u2, v2) (X3,Y3) u(X,Y) X (X2,Y2) X számláló u regiszter CLK S X Interpolációs feltétel: au lineáris u1=au X1+buY1+cu u2=au X2+buY2+cu u3=au X3+buY3+cu v1=av X1+bvY1+cv v2=av X2+bvY2+cv v3=av X3+bvY3+cv

29 P: homogén lineáris Tv: homogén lineáris u v (x,y,z) z y x
Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

30 Perspektíva helyes textúrázás
Paraméterezés Modell-világ-képernyő transzf. xq=ax u+bxv+cx yq=ay u+byv+cy zq=az u+bzv+cz q=aq u+bqv+cq [Xh, Yh, h] = [x q,y q,z q,q]TV(4x3) (X,Y) = [Xh/h, Yh/h] u v Y [Xh1,Yh1,h1] (u1, v1) [Xh3,Yh3,h3] z (u3, v3) (u2, v2) y [Xh2,Yh2,h2] x X [u,v,1]TC(3x3) = [Xh, Yh, h], [u/h,v/h,1/h] = [X,Y,1]TC-1

31 TC-1 mátrixelemek [u/h,v/h,1/h] = [X,Y,1]TC-1 u v Y
au, av , ah bu, bv , bh cu, cv , ch TC-1 = [u/h,v/h,1/h] = [X,Y,1]TC-1 u v Y [Xh1,Yh1,h1](X1,Y1) (u1, v1) (u3, v3) (u2, v2) [Xh3,Yh3,h3] ( X3,Y3 ) [Xh2,Yh2,h2](X2,Y2) X u1/h1 =au X1+buY1+cu u2/h2 =au X2+buY2+cu u3/h3 =au X3+buY3+cu v1/h1 =av X1+bvY1+cv v1/h1 =av X2+bvY2+cv v1/h1 =av X3+bvY3+cv 1/h1=ah X1+bhY1+cw 1/h2=ah X2+bhY2+cw 1/h3=ah X3+bhY3+cw au ,bu,cu av ,bv,cv ah ,bh,ch Tc-1: leképzés: 3x3 mátrix 9 egyenlet 9 ismeretlen

32 Perspektíva helyes textúrázás
u v Y Perspektív helyes X lineáris au X+buY+cu u/h = au X+buY+cu v/h = av X+bvY+cv 1/h = ah X+bhY+ch u = v = ah X+bhY+ch av X+bvY+cv ah X+bhY+ch

33 Perspektíva helyes interpolációs hw.
R G B X Textúra memória u v Div Div [u/h](X,Y) [v/h](X,Y) [1/h](X,Y) X számláló [u/h] regiszter [v/h] regiszter [1/h] regiszter S S S CLK au av ah

34 Textúra függvény definíciója
Parametrikus felületeknél triviális 2. Implicit felületeknél és poligonmodellnél: közvetítő felületek v (u1,v1) (u3,v3) (u2,v2) (1,1) (0,0) u (x3,y3,z3) z (x2,y2,z2) (x1,y1,z1) közvetítő felület = téglalap y x

35 Henger (gömb) közvetítő felület

36 Téglalap közvetítő felület: textúratér nézet
A kiterített közvetítő felületre texúrázott minta látható

37 Téglalap közvetítő felület: textúratér nézet

38 Textúrázott űrhajó

39 Textúrázás = kiterítés
Torzításcsökkentés relaxációval

40 Textúrák szűrése v Y pixel ősképe u X

41 Mip-map adatstruktúra
Y X

42 Bucka leképzés (Bump mapping)
Tároljuk a normálvektort táblázatban vagy a felületi elmozdulást

43 Textúrák az OpenGL-ben
Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

44 A textúraobjektumok elnevezése
void glGenTextures(GLsizei n, GLuint *textureNames); n darab, jelenleg használaton kívüli textúraobjektum nevet a vissza a textureNames tömbbe. A visszaadott nevek nem feltétlenül egymást követő egészek Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

45 A textúraobjektumok létrehozása, használata
void glBindTexture(GLenum target, GLuint textureName); Target: GL_TEXTURE_1D, GL_TEXTURE_2D, vagy GL_TEXTURE_3D, Ha először hívjuk a textureName azonosítóval: létrehoz egy textútraobjektumot és hozzákapcsolja a névhez Ha nem először hívjuk: textureName azonosítójú textúrát teszi kurrenssé Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

46 Textúra beállítása void glTexParameter{if}(GLenum target, GLenum pname, TYPE param); Target: GL_TEXTURE_1D, GL_TEXTURE_2D, vagy GL_TEXTURE_3D, Pname, param: számos paraméterezési lehetőség (lásd OpenGL referencia) Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

47 Textúra beállítás - példák
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); Nagyításhoz ill kicsinyítéshez használt interpoláció (GL_NEAREST mellett lehet még GL_LINEAR) Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

48 Textúra beállítás - példák
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); x és y (itt s és t) irányú ismétlődés (wrap=burkolat), lehet: GL_CLAMP - rögzített GL_REPEAT – ismétlődő parketta Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

49 Textúra beállítás - példák
void glTexImage2D(GLenum target, GLint level, GLint internalFormat, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const GLvoid *texels); 2D struktúrát hoz létre. Target: GL_TEXTURE_2D (vagy más) level > 0 ha több felbontást használunk internalFormat: használt színkomponensek pl GL_RGBA GLsizei width, GLsizei height: a textúraobj mérete Border: határ szélessége (lehet 0) Format, type: a textúraadatok formátuma pl format=GL_RGBA, type= GL_UNSIGNED_BYTE texels: a textúra-minta adatait tartalmazó tömb Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

50 Minta textúra inicializálása
static GLubyte textDescriptor[height][width][4]; static GLuint texName[2]; ... glGenTextures(1, texName); glBindTexture(GL_TEXTURE_2D, texName[0]); glTexParameteri(…); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, textDescriptor); Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

51 Textúra paraméterezése
void glTexCoord{1234}{sifd}(TYPE coords); Textúra kooridnátái: s,t,r,q (~x,y,z,w), ahol q=1 ált. A kurrens (s,t,r,q) textúrakoordinátákat állítja be. Az ezt követően létrehozott csúcspontokhoz a rendszer ezt a textúrakoordinátát rendeli Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

52 Textúra paraméterezése, példa
glBegin(GL_QUADS); glTexCoord2f(0, 0); glVertex3d(1,-1,0); glTexCoord2f(0, 1); glVertex3d(-1,-1,0); glTexCoord2f(1, 1); glVertex3d(-1,1,0); glTexCoord2f(1, 0); glVertex3d(1,1,0); glEnd(); Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

53 Textúra és saját szín kombinálása
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); GL_TEXTURE_ENV_MODE lehet: GL_REPLACE – a textúrával felülírjuk a saját v. megvilágításból adódó színt GL_MODULATE – a megjelenített színt a textúrából és a saját színből közösen számítjuk Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME


Letölteni ppt "Textúrák, világmodellek"

Hasonló előadás


Google Hirdetések