Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
KiadtaSára Hajduné Megváltozta több, mint 10 éve
1
Fullerének és szén nanocsövek előadás fizikus és vegyész hallgatóknak (2011 tavaszi félév – április 4.) Kürti Jenő Koltai János (helyettesítés) ELTE Biológiai Fizika Tanszék
2
C h = n·a 1 +m·a 2 ; pl. (n,m)=(6,3) 6 3 C h kiralitási („felcsavarási”) vektor
5
ELEKTROMOS TULAJDONSÁGOK
6
Félvezetők vagy fémesek n - m = 3q (q: egész): fémes n - m 3q (q: egész): félvezető
7
ZONE FOLDING METHOD („ZÓNAHAJTOGATÁS”)
8
TB Band Structure of 2D Graphene conduction band valence band K M zone folding ac zz (from McEuen’s website) || METAL: n-m = 3q
9
Contour plot of the electronic band structure of graphene. Eigenstates at the Fermi level are black; white marks energies far away from the Fermi level. The inset shows the valence (dark) and conduction (bright) band around the K points of the Brillouin zone. The two bands touch exactly at K in a single point. E ± (k) = γ 0 3 + 2cosk · a 1 + 2cosk · a 2 + 2cos k · (a 1 − a 2 ) tight binding (nearest neighbour) M K σ σ σ pzpz
11
tube axis
12
a) Allowed k lines of a nanotube in the Brillouin zone of graphene. b) Expanded view of the allowed wave vectors k around the K point of graphene. k is one allowed wave vector around the circumference of the tube; k z is continuous. The open dots are the points with k z = 0; they all correspond to the Γ point of the tube. K
13
K k·c = (k +k z )·c = k ·(n 1 ·a 1 + n 2 ·a 2 ) = 2π·q
14
k i ·a j = 2πδ ij k·c = k·(n 1 ·a 1 + n 2 ·a 2 ) = 2π·q k K ·c = 1/3 ·(k 1 – k 2 ) ·(n 1 ·a 1 + n 2 ·a 2 ) = 1/3 ·(n 1 – n 2 ) ·2π k K = 1/3 ·(k 1 – k 2 ) !!!
15
Van Hove szingularitás E
17
(17,0) cikk-cakk cső 2,4eV Félvezető
18
(18,0) cikk-cakk cső Fémes
19
(10,10) karosszék cső Fémes
20
(14,6) királis cső Félvezető
21
(16,1) királis cső Fémes
23
11 22 Kataura plot
24
(a) Kataura plot: transition energies of semiconducting (filled symbols) and metallic (open) nanotubes as a function of tube diameter. (Calculated from the Van-Hove singularities in the joint density of states within the third-order tight-binding approximation.) (b) Expanded view of the Kataura plot highlighting the systematics in (a). The optical transition energies follow roughly 1/d for semiconducting (black) and metallic nanotubes (grey). The V-shaped curves connect points from selected branches (2n+m = 22, 23 and 24). For each nanotube subband transition E ii it is indicated whether the ν = −1 or the +1 family is below or above the 1/d average trend. Squares (circles) are zigzag (armchair) nanotubes.
25
K M n=3i n=3i+1 x 1/d n mod 3 = 2n mod 3 = 0n mod 3 = 1 n=3i+2 triad structure of zigzag tubes (due to trigonal warping)
26
K trigonal warping
27
Lines of allowed k vectors for the three nanotube families on a contour plot of the electronic band structure of graphene (K point at center). (a) metallic nanotube belonging to the ν = 0 family (b) semiconducting −1 family tube (c) semiconducting +1 family tube Below the allowed lines the optical transition energies E ii are indicated. Note how E ii alternates between the left and the right of the K point in the two semiconducting tubes. The assumed chiral angle is 15◦ for all three tubes; the diameter was taken to be the same, i.e., the allowed lines do not correspond to realistic nanotubes.
28
Kis átmérőjű szén nanocsövek (görbületi effektusok)
29
MOTIVÁCIÓ Lehetővé vált kis átmérőjű nanocsövek előállítása: - HiPco ( 0.8 nm) - CoMocat ( 0.7 nm) - DWNTs, borsók (peapods) melegítésével ( 0.6 nm) - növesztés zeolit csatornákban ( 0.4 nm) FELMERÜLŐ KÉRDÉS: A KIS ÁTMÉRŐJŰ CSÖVEK TULAJDONSÁGAI (geometria, sávszerkezet, rezgési frekvenciák stb) KÖVETIK-E A NAGY ÁTMÉRŐJŰ CSÖVEKÉT? grafénból „zónahajtogatás”-sal NEM
30
M. J. Bronikowski et al., J. Vac. Sci. Technol. A 19, 1800 (2001) High-Pressure CO method (HiPco) diameter down to 0.7 nm
31
peapods double-walled carbon nanotubes heating S.Bandow et al., CPL 337, 48 (2001) inner tube diameter down to 0.5 nm
32
SWCNT in zeolite channel (AFI)(d SWCNT 0.4 nm) picture from Orest Dubay J.T.Ye, Z.M.Li, Z.K.Tang, R.Saito, PRB 67 113404 (2003) O Al or P
33
FIRST PRINCIPLES CALCULATIONS DFT: LDA plane wave basis set, cutoff: 400 eV G. Kresse et al Wien Budapest Lancaster
34
arrangement: tetragonal (hexagonal for test) distance between tubes: l = 0.6 nm (1.3 nm for test) hexa tetra
35
r1r1 r2r2 r3r3 11 22 33 bond lengths bond angles (4,2) d c 56 atoms building block
36
tube axis ideal hexagonal lattice
37
tube axis d increases c decreases
38
tube axis extra bond misalignment 11
39
GEOMETRY OPTIMIZATION
40
diameter
41
1/d vs 1/d 0 DFT optimized diameter 1/d 0 (nm -1 ) 1/d (nm -1 ). ZZ AC CH r 0 = 0.1413 nm
42
(d-d 0 )/d 0 vs 1/d 0 relative change 1/d 0 (nm -1 ) (d-d 0 )/d 0 (%). ZZ AC CH r 0 = 0.1413 nm (9,0) : 1.06 ± 0.01 %
43
(d-d 0 )/d 0 vs 1/d 0 relative change 1/d 0 (nm -1 ) (d-d 0 )/d 0 (%). ZZ AC CH r 0 = 0.1413 nm (9,0) : 1.06 ± 0.01 %
44
length of the unit cell
45
unit cell lengths vs 1/d 0 relative change 1/d 0 (nm -1 ) (c-c 0 )/c 0 (%). ZZ AC CH r 0 = 0.1413 nm ZZ triads (9,0) : -0.05 ± 0.01 %
46
bond lengths
47
(r 1 -r 0 )/r 0 vs 1/d relative change 1/d (nm -1 ) (r 1 -r 0 )/r 0 (%). ZZ AC CH r 0 = 0.1413 nm ZZ triads (9,0) : -0.32 ± 0.004 %
48
(r 2 -r 0 )/r 0 vs 1/d relative change 1/d (nm -1 ) (r 2 -r 0 )/r 0 (%). ZZ AC CH r 0 = 0.1413 nm ZZ triads
49
bond angles
50
bond angle 1 vs 1/d 0 DFT optimized 1/d 0 (nm -1 ) 1 (deg). ZZ AC CH r 0 = 0.1413 nm
51
pyramidalization or rehybridization sp 2 sp 3 S.Niyogi et al., Acc. Chem. Res. 35, 1105 (2002)
52
pyramidalization angle P vs 1/d DFT optimized 1/d 0 (nm -1 ) P (deg) ZZ AC CH r 0 = 0.1413 nm C 60 : 11.6°
53
SÁVSZERKEZET
54
TB vs DFT sávszerkezet (10,10)
55
(6,5) - DFT
56
(20,0) zigzag chiral (19,0) (17,0) (16,0) (14,0) (13,0) (11,0) (10,0) (8,0) (7,0)(5,0)(4,0) (6,4) (6,2) (5,3) (6,1) (4,3) (5,1) (4,2) (3,2) ZF-TB DFT 1/d
57
ZF-TB: E g = 2.3 eV DFT: E g = 0 ! (5,0) királis cső fémes
58
(20,0) zigzag chiral (19,0) (17,0) (16,0) (14,0) (13,0) (11,0) (10,0) (8,0) (7,0)(5,0)(4,0) (6,4) (6,2) (5,3) (6,1) (4,3) (5,1) (4,2) (3,2) ZF-TB DFT 1/d
59
ZF-TB METALLIC non-armchair: zigzag, chiral kFkF k F k F - k F (d ) = f(1/d 2 ) K tube axis Másodlagos gap megjelenése
60
Másodlagos gap a (6,3) csőben
61
secondary gap in (7,1) 0.14 eV
62
Nagyobb átmérőn nincs ilyen
63
ZF-TB METALLIC armchair k F k F - k F (d ) = f(1/d 2 ) K kFkF tube axis Nincs másodlagos gap
64
(6,6) (4,4) k F (d )=2/3 kFkF kFkF FF FF
65
AC (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9) (10,10) (11,11)
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.