Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

BMEEPAG0233-C CAAD és építészinformatika 2010 1 2D-3D számítógépes grafika BME Építészmérnöki Kar Építészeti Ábrázolás Tanszék Előadó: Batta Imre Színek.

Hasonló előadás


Az előadások a következő témára: "BMEEPAG0233-C CAAD és építészinformatika 2010 1 2D-3D számítógépes grafika BME Építészmérnöki Kar Építészeti Ábrázolás Tanszék Előadó: Batta Imre Színek."— Előadás másolata:

1 BMEEPAG0233-C CAAD és építészinformatika 2010 1 2D-3D számítógépes grafika BME Építészmérnöki Kar Építészeti Ábrázolás Tanszék Előadó: Batta Imre Színek

2 BMEEPAG0233-C CAAD és építészinformatika 2010 2 Tartalom Tárgy: a színek megjelenését befolyásoló tényezők Kontraszt Kontrasztérzékenység Optimális felbontás Többcsatornás reprezentáció Színkontraszt Szimultán színkontraszt Színasszimiláció, színterülés, élénkülés Adaptáció Dinamikus tartomány Méret- és alak-, világosság és színkonstancia Von Kries színadaptáció Következtetés Fényesség Atmoszféra Színmegjelenés Színváltoztató hatások Összefoglaló: a színmegjelenés modellezése Mellékletek ● Csoportészlelés ● Maszkolás ● Weber, Fechner és Stevens pszichofizikai törvényei

3 BMEEPAG0233-C CAAD és építészinformatika 2010 3 Színek Kontraszt

4 BMEEPAG0233-C CAAD és építészinformatika 2010 4 Kontraszt A szem illetve az agy csak az egymás melletti egyidejű (szimultán), vagy az egymás után (szukcesszíve) megjelenő felületek fénysűrűség- különbségét érzékeli. A látás abszolút világosság rangsorolásra nem képes, a világosság lokális összevetésen alapuló relatív érzet. Az eltérés mértéke a kontraszt, L 1 és L 2 fénysűrűségű felület között érzett világosságkülönbség. Fizikai meghatározása: két fénysűrűség mennyiség különbségének és összegének a hányadosa. K = (L 1 − L 2 ) / (L 1 + L 2 ) Példa L 1 = 2, L 2 = 1 (2 − 1) / (2 + 1) = 1/3 L 1 = 200, L 2 = 100 (200 − 100) / (200 + 100) = 1/3 Ez a számítási mód független a megvilágítástól, az érzetet a tárgy optikai tulajdonságaihoz (visszaverődési tényezőhöz) köti. L2L2 L1L1 L2L2 L1L1

5 BMEEPAG0233-C CAAD és építészinformatika 2010 5 Kontraszt Koffka gyűrűk, 1935 azt szemléltetik, hogy a lokális összefüggések megváltozása miként módosítja a szimultán kontrasztot. Kurt Koffka (1886-1941) német pszichológus a csoportosítás jelentőségét vizsgálta az vizuális észlelésben. Start

6 BMEEPAG0233-C CAAD és építészinformatika 2010 6 Kontraszt

7 BMEEPAG0233-C CAAD és építészinformatika 2010 7 Kontraszt: frekvenciafüggő Lélegző fény illúzió, Gori és Stubbs, 2006

8 BMEEPAG0233-C CAAD és építészinformatika 2010 8 Kontraszt: csoportosítástól függő White illúzió, 1981 : csoportfelismerés által irányított szimultán kontraszt. Az alakzatok csoportalkotó elrendezése befolyásolja a lokális világosság-összevetés irányát. Itt a színek attól függően világosabbak vagy sötétebbek, hogy a csoportjaik a sötétebb vagy világosabb sávokhoz tartoznak. Start Csoportészlelésről ►

9 BMEEPAG0233-C CAAD és építészinformatika 2010 9 Kontraszt: csoportosítástól függ ő Kazetta illúzió, 2006 : fedezze fel a korongokat a képen. Anthony Norcia (http://www.ski.org/AMNorcia_lab/)

10 BMEEPAG0233-C CAAD és építészinformatika 2010 10 Kontraszt: csoportosítástól függő Salvador Dali (1904-1989): Rabszolgapiac Voltaire eltűnő mellszobrával, 1942

11 BMEEPAG0233-C CAAD és építészinformatika 2010 11 Kontraszt: megvilágítási szint függő Adaptációs szint (közvetlen háttér, tágabb környezet megvilágítása) – módosítja a kontraszt érzékenységet. A fénysűrűség különbség (L 2 − L 1 ) mind a három ábrán azonos. L1L1 L2L2 L 0 érzékelési küszöb Fénysűrűség Start

12 BMEEPAG0233-C CAAD és építészinformatika 2010 12 Kontrasztérzékenység: frekvenciafüggő Kontrasztérzékenység függvény KÉF (Contrast Sensivity Function, CSF) az érzékenységet növekvő fénysűrűségű szinuszosan modulált mintázat érzékelési küszöbjével méri. Optimális felbontás: 8 ciklus/fok (cpf). http://www.usd.edu/coglab/CSFIntro.htm Érzékelési küszöb változása 7 növekvő fénysűrűségű, 0.5 és 50 ciklus/fok között szinuszosan modulált mintázat esetén. Jó megvilágításnál (90-900 troland) az érzékenységi maximum 8 c/f. (van Ness és Lamming, 1991) Térfrekvencia (ciklus/fok) Modulációs érzékenységi küszöb -1 Térfrekvencia Fénysűrűség

13 BMEEPAG0233-C CAAD és építészinformatika 2010 13 Robson-Ohzawa kontrasztérzékenységi teszt A kontrasztérzékenység a látvány (kép) részletességétől, a térfrekvenciák (helyzeti frekvenciák) nagyságától függően változik, amely természetesen távolságfüggő. Kontrasztérzékenység: frekvenciafüggő Start Kontrasztérzékenység  Térfrekvencia 

14 BMEEPAG0233-C CAAD és építészinformatika 2010 14 Optimális felbontás: 8 cpf Schyns-Oliva illúzió, 1999 : az optimális képfrekvencia (8 cpf) a nézési távolsággal módosul. Közelről nézve a baloldali kép Dr. Angry, és a jobboldali Mr. Smile, távolról nézve fordítva. Nézze meg a képet három méterről. Dr. Angry, Mr. Smile Start

15 BMEEPAG0233-C CAAD és építészinformatika 2010 15 Színek Többcsatornás reprezentáció

16 BMEEPAG0233-C CAAD és építészinformatika 2010 16 Többcsatornás reprezentáció Salvador Dali (1904-1989): Gala szemléli a Földközi tengert, amely húsz méterről Abraham Lincoln portréjává változik, 1976 Start

17 BMEEPAG0233-C CAAD és építészinformatika 2010 17 Többcsatornás reprezentáció A retina érzékelő mezők a kontraszthatárról adnak erős válaszokat. A kérgi idegsejtek különböző helyfrekvencia sávokra (és különböző irányokra) érzékenyek. A többcsatornás (többfelbontású) reprezentáció a megkülönböztetés és zajszűrés, majd a vizuális kategorizálás mechanizmusa. Más kérgi idegsejtek észlelik a fát, a lombokat és a leveleket.

18 BMEEPAG0233-C CAAD és építészinformatika 2010 18 Többcsatornás reprezentáció Chuck Close Arckép

19 BMEEPAG0233-C CAAD és építészinformatika 2010 19 Többcsatornás reprezentáció A teszt időtartama 1 perc! Adaptációs utóhatás (Blakemore és Sutton, 1969): Jobboldali ábrán az adaptáló csíkok frekvenciák különbözőek. A baloldali ábrán az alsó és felső tesztcsíkok frekvenciái azonosak. Ha a jobboldali ábrát egy percig nézte, a baloldali felső ábra frekvenciái kiszélesednek, az alsó ábra frekvenciái összeszűkülnek. Az adaptáció az agykéregben történik, akkor is hat, ha az adaptációs mintázatot csak az egyik szem, a teszt mintázatot csak a másik szem látja.

20 BMEEPAG0233-C CAAD és építészinformatika 2010 20 Színek Színkontraszt

21 BMEEPAG0233-C CAAD és építészinformatika 2010 21 Színkontraszt Egyidejű (szimultán) színkontraszt : a kontraszthatás a világosság kontraszthoz képest sokkal gyengébb. Josef Albers, 1963

22 BMEEPAG0233-C CAAD és építészinformatika 2010 22 Színkontraszt Szimultán színkontraszt : a szín színezete (hue) a háttér színével ellentétes (komplementer) irányba húzódik, egyúttal a színkontraszt erősödik. A színkontraszt gyenge érzet. (Az ábrán a színek közel azonos világosságúak, így a világosság kontraszt hatása elhanyagolható.) Start

23 BMEEPAG0233-C CAAD és építészinformatika 2010 23 Kontraszt redukció Színasszimiláció Ha a mintázat a színe nagyon különbözik a háttér színétől, – a fúziós frekvencia előtt – a magas frekvenciájú mintázat színe keveredik a háttér színével. Csökken a színek telítettsége, a hatás a legerősebb a kék színeknél, mert az R csapok felbontása a legalacsonyabb (5- 10 %). Fajtái: Bezold hatás, neonos színterülés, vízfesték hatás. Start Wandell, 1995

24 BMEEPAG0233-C CAAD és építészinformatika 2010 24 Kontraszt redukció Bezold színasszimiláció : a magas frekvenciájú mintázat színe magához húzza a háttér színét. Wilhelm von Bezold (1837-1907) német fizikus.

25 BMEEPAG0233-C CAAD és építészinformatika 2010 25 Kontraszt redukció Neonos színterülés : (Neon color spreading) a kontraszt csökkenés szétterül, áttetszőség vagy fedettség érzetét kelti. Kuehni, 1997

26 BMEEPAG0233-C CAAD és építészinformatika 2010 26 Kontraszt redukció Vízfesték illúzió Pinna, 1987 Start

27 BMEEPAG0233-C CAAD és építészinformatika 2010 27 Kontraszt indukció Élénkülés (Crispening) : a színasszimiláció ellentéte. A gyenge kontraszt – pl. közel azonos színezetű vagy világosságú háttér – megnöveli a színérzékenységet, ezért a közeli színek között a színezett-különbség nagyobbnak látszik. Moroney, 2001 Érzékelt világosság 0 100 0 névleges fényesség Háttér

28 BMEEPAG0233-C CAAD és építészinformatika 2010 28 Színek Adaptáció

29 BMEEPAG0233-C CAAD és építészinformatika 2010 29 Adaptáció Vizuális adaptáció ● Az érzékelés érzékenységét a környezeti hatások (ingerek) nagyságrendjéhez igazítja (adaptációs szint). Ha az inger erősödik, csökken az érzékenység*. ● Erősíti az új, értelmezésre váró, és gyengíti vagy megszünteti a tartós vagy ismétlődő (redundáns) ingerek észlelését. Optikai, szenzoros és kognitív mechanizmusai: ● pupilla (2 - 8 mm), ● receptor integrációs idő változás, ● pálca – csap váltás, ● érzékelő mező, ● agyterületek (CGL, agykéreg). * Kivéve: veszély érzékelés (fájdalom). Adaptációs paradoxon: nappal és éjszaka egyszerre. René Magritte: A fény birodalma, 1954.

30 BMEEPAG0233-C CAAD és építészinformatika 2010 30 Adaptáció Abszolút küszöb: a legkisebb mennyiség, amelynél az inger még/már érzékelhető. Különbségi küszöb (relatív küszöb, éppen érzékelhető érzetkülönbség): két inger megkülönböztetéséhez szükséges legkisebb különbség. Adaptációs szint Az adaptáció a látás érzékenységét a látvány átlagos megvilágítási szintjéhez (fénysűrűségéhez) igazítja. Adaptálódott látás paraméterei: ● abszolút küszöb (már nem fekete), ● felső különbségi küszöb (még nem vakít – szaturáció), ● érzékelhető szín- és világosságárnyalatok száma. Csillagfény 02468-2- 4- 6 HoldfényBelsőtérNapfény 0 2 4 6 8 -2 - 4 - 6 Log különbség küszöb: minta/háttér (cd/m2) Pálcák Csapok Log háttér fényerősség (cd/m2) N a p p a l iK ö z t e sÉ j s z a k a i 02468-2- 4- 6 Háttér Minta Pálca gyenge élesség nincs színlátás Csapok jó élesség jó színlátás Pálca & csapok

31 BMEEPAG0233-C CAAD és építészinformatika 2010 31 Adaptáció Dinamikus tartomány adott adaptációs szinthez tartozó érzékenységi terjedelem (egyidejűleg látott terjedelem). Mérőszáma (Dynamic Range) arányszám, a felső és alsó küszöb hányadosa: D = L max / L min Az emberi látás max. egyidejű érzékenységi terjedelme 10000 : 1. Az emberi látás 10 nagyságrend fényerősség terjedelmet (árnyalat- terjedelmet) képes érzékelni. Ahogy az emberi szem sose lát. Széles dinamika tartományú (HDR) felvételek összenyomva megjelenítve szűk dinamikájú képernyőn, nyomaton vagy vetítéssel. Trey Ratcliff http://stuckincustoms.comhttp://stuckincustoms.com

32 BMEEPAG0233-C CAAD és építészinformatika 2010 32 Konstancia – méret Az észlelés a tárgyak állandó vizuális tulajdonságait jeleníti meg. Méret- és alakkonstancia függetlenül a retinaképtől, amely a tárgytávolságtól és a rövidüléstől függően változik, a tárgyakat azonos nagyságúnak és alakúnak látjuk. Szín- és világosság - konstancia függetlenül a megvilágítástól, amelynek spektrális összetétele és intenzitása a belső és külső térben, napszakonként változik, a tárgyak színét és világosságát állandónak látjuk. Méret illúzió, Shepard, 1990

33 BMEEPAG0233-C CAAD és építészinformatika 2010 33 Konstancia – világosság Sakktábla illúzió, 1995 : a látás alkalmazkodik a megvilágításhoz, pontosabban függetleníti magát a megvilágítástól, pl. az árnyéktól, hogy fenntartsa a látvány értelmét. Itt az A és B felület azonos színű. Adelson, 2000 Start

34 BMEEPAG0233-C CAAD és építészinformatika 2010 34 Konstancia – szín Von Kries színadaptáció, 1902 : a látás függetleníti magát a fényforrás színétől (spektrális eloszlásától), és kiegyenlíti annak esetlegesen színtorzító hatását. Paul Cezanne: Almák, barackok, körték, szőlő (1879-80). Start

35 BMEEPAG0233-C CAAD és építészinformatika 2010 35 Konstancia – szín Von Kries színadaptáció szenzoros és felső szintű mechanizmusok kombinációja. Szenzoros: normalizálás a legerősebb ingerhez (spektrális hullámhossz összetevőhöz). A három csap (csatorna) érzékenység szabályozása egymástól független. Felső szintű mechanizmusok: az érzetet módosítja a látvány tartalma. ● Szines megvilágításban ha a látvány legvilágosabb eleme nem jellegzetes (ismert) fehér tárgy, a színadaptáció kognitív része tökéletlen lesz, mert nem dönthető el, hogy a tárgy színe fehér vagy a megvilágító színéhez hasonló (Hunt-Berns hatás). ● Memória színek: kék ég, zöld fű, bőrszín stb. 400500 600 700 0 1

36 BMEEPAG0233-C CAAD és építészinformatika 2010 36 Konstancia – szín Purves és Lotto, 2002 Start

37 BMEEPAG0233-C CAAD és építészinformatika 2010 37 Színek Következtetés

38 BMEEPAG0233-C CAAD és építészinformatika 2010 38 Következtetés Kanizsa illúzió, 1976 a szubjektív kontúr takarásra vagy átlátszóságra alapított következtetés eredménye. (Gaetano Kanizsa, Trieszti egyetem) Start Csoportészlelésről ►

39 BMEEPAG0233-C CAAD és építészinformatika 2010 39 Következtetés Sakkbábú illúzió, 2005 : rétegfelismerés által irányított szimultán kontraszt. Itt a színek attól függően világosabbak vagy sötétebbek, hogy a réteget füstnek vagy ködnek gondoljuk. A felső ábrán arra következtetünk, hogy a réteg füst, mert a mögötte előtűnő figurák világosabbak. Az alsó ábrán arra következtetünk, hogy a réteg köd, mert a mögötte előtűnő figurák sötétebbek. Gilchrist, 2005 Start

40 BMEEPAG0233-C CAAD és építészinformatika 2010 40 Következtetés: világosabb vagy fényesebb Lehetetlen lépcső illúzió Baloldalt a sávok anyagváltásnak látszanak, (egy régión belül észlelt kontraszt: különböző reflektancia.) Jobboldalt a sávok árnyéknak látszanak, (szomszédos régiók határán észlelt kontraszt: különböző illuminancia.) A régiókat a képen síkok hozzák létre. Adelson, 2000

41 BMEEPAG0233-C CAAD és építészinformatika 2010 41 Következtetés: világosabb vagy fényesebb Hogyan különböztetjük meg a tárgyról a szemünkbe jutó fényben (luminancia) a megvilágítást (illuminancia) és a reflektanciát vagy az traszmittanciát? Fizikai mennyiségek (E) Megvilágítás (Illuminancia) = a felületre eső fénymennyiség. (R) Reflektancia, albedó = a megvilágított felületről visszaverődő fény hányada. Pl. bársony 0.01%, a papír 0.85%. (T) Transzmittancia = a megvilágított felületen átengedett fény hányada, a látási közeg fényáteresztő tulajdonsága. (L) Fénysűrűség (Luminancia) = a felületről a szembe jutó fénymennyiség. Pszichofizikai mennyiségek Világosság (Brightness) = a vizuális érzetnek az a jellemzője, amely szerint egy felület több vagy kevesebb fényt sugároz. Fényesség (Lightness) = relatív világosságérzet, a felület becsült reflektanciája vagy transzmittanciája, a látórendszernek a világosságérzet alapján kialakított következtetése. L λ Luminancia Fényerő E λ Illuminancia R λ ReflektanciaT λ Transzm. Világosság Fényesség

42 BMEEPAG0233-C CAAD és építészinformatika 2010 42 Következtetés: világosabb vagy fényesebb p q r Illuminancia képReflektancia kép Luminancia kép Adelson, 2000 Következtetések A reflektancia-kép két különböző reflektanciájú anyagot mutat. Az illuminancia-kép három különböző megvilágítottságú felületet mutat. A luminancia-képből levont következtetések: ■ p és q felületek luminanciája különböző, de reflektanciájuk azonos. ■ q és r felületek luminanciája és reflektanciája különböző, illuminanciájuk közös. ■ p és r felületek luminanciája itt éppen azonos, mert p alacsonyabb reflektanciáját magasabb illuminancia ellensúlyozza. ■ p és q felület azonos anyagból van, ezért a fényességűk azonos. Viszont p felületnek nagyobb a luminanciája, mint q-nak, ezért a világosságuk különböző. ■ p és r felület fényessége és a világossága is különböző.

43 BMEEPAG0233-C CAAD és építészinformatika 2010 43 Következtetés: világosabb vagy fényesebb Következtetések: ● Lassú változás – valószínűleg megvilágítás változás, hirtelen változás – valószínűleg reflektancia változás. ● T, L, Y, X, Ψ típusú csatlakozások: régiókat hoznak létre. ● 3 dimenzió (síkok) ● Statisztikán alapulő becslés (atmoszferikus következtetések) Csatlakozás fajták és kétértelmű élek. Gilchrist, 2001 TX L Ψ Y Hogyan különböztetjük meg a tárgyról a szemünkbe jutó fényben (luminancia) a megvilágítást (illuminancia) és a reflektanciát vagy az traszmittanciát?

44 BMEEPAG0233-C CAAD és építészinformatika 2010 44 Világosabb vagy fényesebb 3D-és jelzőmozzanatok is segítik a megvilágítás és a reflektancia megkülönböztetését. Purves és Lotto, 2002 Start

45 BMEEPAG0233-C CAAD és építészinformatika 2010 45 Világosabb vagy átlátszóbb Fátyol illúzió Edward H. Adelson után Start

46 BMEEPAG0233-C CAAD és építészinformatika 2010 46 Kontraszt redukció Chubb illúzió, 1989 : a kontraszt csökken, ha a környezet mintázata azonos frekvenciájú és erősebb kontrasztú. A hatás következtetésen alapul: csökkenti kontrasztot, ha az atmoszferikus közeg nem tökéletesen átlátszó, pl. köd, fátyol, folyadék, vagy csak nem látszik annak, mint a baloldali ábrán.

47 BMEEPAG0233-C CAAD és építészinformatika 2010 47 Kontraszt redukció Fátyol illúzió : átlátszóság megjelenítése teljesen tömör anyaggal. Giuseppe Croff (1810-1869): Apáca fátyollal, c. 1860.

48 BMEEPAG0233-C CAAD és építészinformatika 2010 48 Színek Színmegjelenés

49 BMEEPAG0233-C CAAD és építészinformatika 2010 49 Színmegjelenés A színek megjelenését megváltoztatják: ● Kontraszt világosság- és színkontraszt, színasszimiláció, színterülés, élénkülés ● Felbontás többcsatornás reprezentáció ● Alaksajátságok vizuális tartalom értékelése (fényesség, atmoszféra) ● Adaptáció adaptálódás a látvány fény- és színviszonyaihoz, függetlenítés a megvilágítás színétől ● Ingernagyság fénysűrűség növekedés-csökkenés. Josef Albers, 1963

50 BMEEPAG0233-C CAAD és építészinformatika 2010 50 Színmegjelenés A látvány fénysűrűségének növekedésével csökken a látás érzékenysége, de... ● pontosabb receptor válaszok összevetése, javul a szín- és világosság megkülönböztető képesség: Stevens hatás Hunt hatás ● a javulás nem egyenletes, az adaptációs többlet fokozatosan csökken: Bartleson-Breneman hatás ● a pálca, az R, K és H csapok érzékenysége különböző, ezért megváltozik a színek színezete: Bezold-Brücke színezet-eltolódás Purkinje színezet-eltolódás ● illetve azonos fénysűrűség mellett a színek világossága különböző: Helmholtz-Kohlrausch hatás Abney hatás Az alacsony foton szám következményei. A négy ábra egyre növekvő megvilágítással 400 retina receptort illusztrál. Ahhoz, hogy a körrel jelzett terület világosságkülönbsége érzékelhető legyen, növekvő számú foton szükséges. Pirenne (1967) alapján

51 BMEEPAG0233-C CAAD és építészinformatika 2010 51 Színmegjelenés Stevens hatás : a fénysűrűség növekedésével javul a szín- és világosság megkülönböztetés. Ezért a világosság kontraszt erősödik, a sötét színek sötétebbek, a világos színek világosabbak lesznek Hunt hatás : a fénysűrűség növekedésével a színek színdússága (tisztasága) erősödik, a színek élénkebbek lesznek. Ha csökken a színek színdússága, azt világosság csökkenésként érzékeljük. Start

52 BMEEPAG0233-C CAAD és építészinformatika 2010 52 Színmegjelenés Stevens & Hunt hatás Az első impresszionisták, Corot, Pisarro képeinek tanulsága: szabadban, erős fényben felrakott festékek színesebbnek látszanak, mint azután kiállítva gyenge múzeumi megvilágításban. Claude Monet a Roueni sorozatot sötét szobából nézve festette. Claude Monet: Roueni katedrális, 1892,1893,1894 Jean-baptiste Camille Corot: Villa d'Este, Tivoli

53 BMEEPAG0233-C CAAD és építészinformatika 2010 53 Színmegjelenés ABCDE 1 2 3 3 5 Bartleson-Breneman hatás, 1967 : a komplex képek kontrasztja függ a környezet (surround) fénysűrűségétől. A sötét környezet növeli a színek világosságát, a sötét színeknél a növekedés nagyobb, ezért sötét háttér előtt a fekete kevésbé mély. A világos környezet csökkenti a színek világosságát, a sötét színeknél a csökkenés nagyobb, ezért a világos árnyalatok száma bővül. Start

54 BMEEPAG0233-C CAAD és építészinformatika 2010 54 Színmegjelenés Bezold-Brücke színezeteltolódás Az R, K és H csap érzékenysége különböző, alacsony megvilágításnál a pálcák is bekapcsolódnak a színérzékelésbe. Ezért a fénysűrűség erősödésével vagy gyengülésével az elszigetelt (nem kapcsolódó) színek színezete megváltozik. Start

55 BMEEPAG0233-C CAAD és építészinformatika 2010 55 Színmegjelenés Helmholtz-Kohlrausch hatás Az R, K és H csap érzékenysége különböző, ezért a színek világossága azonos fénysűrűség mellett különböző (heterokromatikus világosság). Ezért a színdús, telített színek (un. kromatikus színek) − a környezetük azonos fénysűrűségű akromatikus (szürke-fehér) színeihez képest − világosabbak, „világítanak” (Faberglut). Ergo nem a fehér a legvilágosabb szín! Start 700 400 λ L(λ) 700 400 λ ∫ L 1 (λ)= ∫ L 2 (λ) Szín 1 ≠ Szín 2

56 BMEEPAG0233-C CAAD és építészinformatika 2010 56 Színmegjelenés Abney hatás, 1910 : fehérrel keverve – a telítettség csökkenésével – a színek színezete (hue) megváltozik. 500 nm (sárga) alatt a kék felé tolódik el, 500 nm felett a sárga felé. A hatás a monokromatikus színeknél érzékelhető. Amint az a CIE 1931-es színességi diagramon látható, a vörös (600 nm) fehérrel keverve sárgás színű lesz. Burns, 1984; Mizokami, 2006

57 BMEEPAG0233-C CAAD és építészinformatika 2010 57 Színmegjelenés Látvány jellemzői ● környezet és háttér ● részletesség (felbontás) ● árnyalatszám ● szín- és világosságterjedelem ● kontraszt ● képi tartalom ● zavaró mintázat (zaj) Látási feltételek ● látási közeg (zaj) ● látási távolság (felbontás) ● adaptáltság a látvány fény- és színviszonyaihoz ● figyelem, várakozás ● emlékek, tapasztalat, tanultak a Megjelenés (belső kép) paraméterei:

58 BMEEPAG0233-C CAAD és építészinformatika 2010 58 Színmegjelenés Képességek ● látásélesség (optikai és receptor felbontóképesség) ● szín- és világosság érzékenység ● kontrasztérzékenység ● adaptáltság ● figyelem, várakozás ● emlékek, tapasztalat, tanultak Képkorrekciók ● háttér és környezet ● felbontás ● fényerősség (világosság) ● színerősség (króma) ● kontraszt (szín- és világosság terjedelem) a Megjelenés (belső kép) paraméterei:

59 BMEEPAG0233-C CAAD és építészinformatika 2010 59 Színmegjelenés Színvisszaadás: ► Látvány  Kép egy látvány adott megvilágítási környezetből ugyanolyannak látszó kép legyen egy médián, másik megvilágítási környezetben. ► Kép  Kép egy kép adott médián, adott megvilágítási környezetből ugyanolyannak látszó kép legyen egy másik médián, másik megvilágítási környezetben. LátványKép (média) Szem

60 BMEEPAG0233-C CAAD és építészinformatika 2010 60 Színek 1. sz. melléklet Csoportészlelés

61 BMEEPAG0233-C CAAD és építészinformatika 2010 61 Csoportészlelés Észlelés célja : a lényeges információk hatékony felhasználása. A látvány túl részletes, nem tudunk minden információt egyformán feldolgozni. Elkülönítés : az állandó és az eltérő, majd a lényeges és lényegtelen elkülönítése. Kategorizálás : az összetartozás és különbözőség megállapítása, majd a kategóriákba sorolása. Az észlelés többszintű folyamat: ● alsó szint (szenzoros mechanizmusok): kontraszt- és él detektálás. ● középső szint: csoportosítás. ● felső szint: következtetés az emlékezet, tapasztalat és tanultak alapján. Vissza

62 BMEEPAG0233-C CAAD és építészinformatika 2010 62 Csoportészlelés Hering : az észlelés velünk született fiziológiai mechanizmusokon alapul. Az adaptáció és más folyamatok a retina neurális hálózatának velejárója. Gestalt elmélet (alaklélektan): a látvány észlelt képe az alakjuktól, pontosabban a térbeli összefüggéseik felismerésétől függ. A felismerés kiegészíti a hiányos, és racionalizálja az összefüggéstelen ingereket. Helmholtz : az észlelés tudattalan induktív következtetések eredménye. Amit látunk, az a vizuális rendszer legjobb becslése arról, hogy mi van a világban. A becslés a puszta képi adatra és az előzetes tapasztalatra támaszkodik. Látvány Szenzor Kép Csoportosítás Következtetés

63 BMEEPAG0233-C CAAD és építészinformatika 2010 63 Csoportészlelés Az elkülönítés és a kategorizálás eszköze a látványelemek csoportosítása, a látvány térbeli összefüggéseinek értékelése. Az összefüggések alaptípusai az alaksajátságok: ● közelség, ● hasonlóság, ● közös sors, ● folytonosság, ● folytathatóság, ● zártság, ● kapcsolódás stb. Vissza

64 BMEEPAG0233-C CAAD és építészinformatika 2010 64 Színek 2. sz. melléklet Maszkolás

65 BMEEPAG0233-C CAAD és építészinformatika 2010 65 Maszkolás Maszkolás: az egyik inger (információ) elfedi a másikat. Típusai : ● A maszk és a jel időben egymást követi (visszafelé ható maszkolás). ● A maszk és a jel egyidejűleg látható. & ● A maszk takarja a jelet. ● A maszk és a jel különálló. Mechanizmusai : ● Gátlás: a maszk gátolja a jel tudatosulását. ● Adaptáció: a maszkban előforduló nagyszámú inger, tk. zaj, csökkenti az érzékenységet a jel frekvenciáin. Jel és maszk # # # # Vissza

66 BMEEPAG0233-C CAAD és építészinformatika 2010 66 Maszkolás Visszafelé ható maszkolás : ha a jel után kis idővel késleltetve jelenik meg, a kör alakú maszk láthatatlanná teszi a jelet. Ha a jel és a maszk egyidejüleg látható, nincs maszkolás. Késleltetve Egyidejűleg Együtt

67 BMEEPAG0233-C CAAD és építészinformatika 2010 67 Maszkolás Metakontraszt (Macknik, 2000) : olyan visszafelé ható maszkolás, ahol a maszk és a jel érintkezik. A jel (középső csík) és a maszk (szélső csíkok) egymást váltva villognak. Ha a maszk eltávolodik a jeltől, a jel láthatóvá válik. Start

68 BMEEPAG0233-C CAAD és építészinformatika 2010 68 Maszkolás Metakontraszt (Macknik, 2000) : A maszk akkor is hat, ha vörös-zöld (anaglif) szemüveggel az egyik szem csak a jelet, a másik szem csak a maszkot látja. A maszkolás tehát nem a retinán, hanem az agyban történik. Start

69 BMEEPAG0233-C CAAD és építészinformatika 2010 69 Maszkolás Maszk hatása amplitúdó függő...és frekvencia függő. JELMASZK JELMASZK JELMASZK JELMASZK JELMASZK JEL MASZK JEL MASZK JEL MASZK JEL MASZK JEL MASZK JEL MASZK JEL MASZK A maszkolás akkor a legerősebb, ha a maszk- és a jelamplitudó (kontraszt) és/vagy a két frekvencia egymáshoz közel kerül.

70 BMEEPAG0233-C CAAD és építészinformatika 2010 70 Színek 3. sz. melléklet Weber, Fechner, Stevens

71 BMEEPAG0233-C CAAD és építészinformatika 2010 71 Lin Ingererősség ➨ Log Ingererősség ➨ Weber-Fechner Weber az érzet erősődéséhez egyre nagyobb fizikai inger szükséges. Az éppen észrevehető érzetkülönbség (éék) kiváltásához szükséges inger ( ΔI ) és az alapinger ( I 0 ) aránya – érzékszervenként eltérő nagyságú – állandó (Weber tört): ΔI/I 0 = k Példa: éék = 3 kg + 3 dkg; 30 kg + 3 kg Fechner (1860) éék az érzet mértékegysége, (t.k. legkisebb közös többszöröse). Az érzet erősődése akkor egyenletes, ha fizikai inger logaritmus szerint emelkedik: É = k × log(I) ahol É az érzet, k a modalitástól (érzékszervtől) függő konstans, I fizikai inger, az éék többszöröse. Lin Kumulatív ÉÉK ➨ Weber-Fechner Log - Lin súlyemelés 0.02 fájdalom (elektromos áramütés) 0,013 ízlelés (só) 0,083 nyomásérzékelés 0,022 hallás 0,029 látás 0,079 modalitásk hosszúság 0,029 Teghtsoonian (1971) Weber törtek Vissza

72 BMEEPAG0233-C CAAD és építészinformatika 2010 72 Fechner A Weber-Fechner törvény alapján a kontraszt érzet (két felület között) különböző megvilágítás nagyságnál állandó marad (Cornsweet): I = k × log(Φ×ρ) ahol a kontrasztot előidéző I inger a Φ megvilágítás és ρ visszaverődési tényező (albedó) log szorzata. ( k arányosítási konstans.) Példa. Két különböző ρ 1 és ρ 2 visszaverődésű felület Φ megvilágításnál a következő ingert eredményezi: I 1 = k log(1.0×0.8) = 2.9 k I 2 = k log(1.0×0.1) = 2.0 k 2Φ (kétszeres) megvilágításnál: I 1 = k log(2.0×0.8) = 3.2 k I 2 = k log(2.0×0.1) = 2.3 k Tehát az ingernövekedés 0.3 mindkét esetben. ρ1ρ1 ρ2ρ2 Φ ρ1ρ1 ρ2ρ2 2Φ2Φ ρ 1 = 0.8, ρ 2 = 0.1 http://psych.hanover.edu/JavaTest/Media/Chapter02.html

73 BMEEPAG0233-C CAAD és építészinformatika 2010 73 Stevens Stevens (1957) I fizikai inger növekedés É érzet erősséget hatványfüggvény szerint növeli. A γ hatványkitevő értéke az érzékelés fajtájától (modalitástól) függ. É = I γ A hatványkitevő értéke lehet egynél nagyobb vagy kisebb: ● Ha nagyobb ( γ > 1), az inger növekedésével az érzet erősség meghatványozódik. Pl. a fájdalom egyre erősebb lesz. Log-log függvénnyel ábrázolva: egyenes, amelynek emelkedése 45º-nál nagyobb. ● Ha kisebb ( γ < 1), az érzet erősődés az inger növekedést egyre kevésbé követi, tehát a Weber-Fechner törvény érvényesül. Log-log függvénnyel ábrázolva: egyenes, amelynek emelkedése 45º-nál kisebb. Log Ingererősség ➨ Log Kumulatív ÉÉK ➨ Stevens Log - Log γ > 1 γ < 1 Elektromos áramütés, újjal érzékelve 3,5 Távolság 1,0 Fény, rövid felvillanás 0,5 Fény, világosság, 5°-os sötét háttér előtt 0,33 Rezgés, 250 Hz újjal érzékelve 0,6 Hang, 3000 Hz 0,67 modalitás γ Meleg, fém karon érzékelve 1,6 γ = 1

74 BMEEPAG0233-C CAAD és építészinformatika 2010 74 Stevens KontinuumKitevőIngerfeltételek Hangosság0.673000 Hz-es hangnyomás Rezgés0.9560 Hz-es, ujjon Rezgés0.6250 Hz-es, ujjon Világosság0.335°-os folt sötétben Világosság0.5Pontszerű fény Világosság0.5Rövid felvillanás Világosság1Röviden felvillanó pontszerű fény Fényesség1.2Szürke papír visszaverődése Vizuális hossz1Vetített vonal Vizuális terület0.7Vetített négyzet Vörösség (telítettség)1.7Vörös-szürke keverék Íz1.3Cukor Íz1.4Só Íz0.8Szaharin Szag0.6Heptán Hideg1Karral érintkező fém Meleg1.6Karral érintkező fém Meleg1.3Bőr besugárzás, kis terület Meleg0.7Bőr besugárzás, nagy terület Discomfort, hideg1.7Egész testet érző sugárzás Discomfort, meleg0.7Egész testet érző sugárzás Hőmérsékleti fájdalom1Sugárzó hő bőrön Tapintható érdesség1.5Csiszolóvászon dörzsölés Tapintható keménység0.8Összenyomott gumi Ujjtávolság1.3Vastagság Nyomás a tenyére1.1Egyenletes erőhatás bőrön Izomerő1.7Egyenletes összehúzódás Súlyosság1.45Emelt súly Nyúlósság0.42Szilikon folyadék keverése Elektromos áramütés3.5Áram ujjakon keresztül Ének1.1Ének hangnyomás Szöggyorsulás1.45-sec forgás (Idő)tartam1.1Fehérzaj Log Ingererősség Log rel. érzeterősség Log - Log Lin Ingererősség Lin rel. érzeterősség Lin - Lin Hosszúságbecslés Áramütés Fényerősség Hangosság Hosszúságbecslés Áramütés Fényerősség Hangosság γ = 0.3 γ = 0.5 γ = 1 γ = 3.5 γ = 0.3 γ = 0.5 γ = 1 γ = 3.5 0.11000 0.1 1000 04 0 4 É = I γ

75 BMEEPAG0233-C CAAD és építészinformatika 2010 75 © Batta Imre, 2008 www.star.bme.hu http://psych.hanover.edu/JavaTest/Media/Chapter01.html http://psych.hanover.edu/JavaTest/Media/Chapter02.html http://www.purveslab.net/main/ http://www.purveslab.net/seeforyourself/index.html?0.00 http://www4.ncsu.edu/~rgkuehni/unpubAndPresentations.html http://www.lottolab.org/ http://lite.bu.edu/vision/applets/lite/lite/lite.html http://www.michaelbach.de/ot/index.html http://illusioncontest.neuralcorrelate.com/ http://www.ritsumei.ac.jp/~akitaoka/index-e.html


Letölteni ppt "BMEEPAG0233-C CAAD és építészinformatika 2010 1 2D-3D számítógépes grafika BME Építészmérnöki Kar Építészeti Ábrázolás Tanszék Előadó: Batta Imre Színek."

Hasonló előadás


Google Hirdetések