Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
1
Valószínűségszámítás és statisztika előadások
Mérnök informatikus BSc szak PMKMANB011H 6. téma Teljes valószínűség tétel és a Bayes-tétel Teljes valószínűség tétel. Szemléltetés fa diagrammal. Bináris csatorna példája. Bayes-tétel és alkalmazása. Inverz fa diagram. Feladatok. j PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
2
Teljes valószínűség tétel
Legyen B1, B2, B3,…, Bn teljes eseményrendszer, azaz páronként egymást kizáró események és összegük az Ω eseménytér: Bk·Bi=Ø ( ha k≠i ) és B1+ B2+ B3+…+ Bn = Ω. Ekkor tetszőleges A eseményre Bizonyítás A·B2 A·B3 A·B1 B1 B2 B3 B4 B5 Mivel (A·Bk)·(A·Bi)=Ø , ha k≠i , ezért A A·B4 A·B5 PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
3
PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
Teljes valószínűség tétel A valószínűségek szorzás-tétele alapján minden k=1, 2, 3,…, n esetén. Behelyettesítve az előző egyenlőségbe, kapjuk a bizonyítandó teljes valószínűség tétel formuláját A tétel olyan esetekben hasznos segítség, amikor az összeg tagjait könnyebb kiszámítani, mint közvetlenül az A esemény valószínűségét. PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
4
PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
Szemléltetés fa diagrammal Szorzat események Valószínű-ségeik P(A|B1 ) B1 B2 B3 A A B1·A P(B1·A) B1 A P(B1 ) P(A|B2 ) A B2·A P(B2·A) P(B2 ) start B2 A Feldaraboltuk az eseményteret idegen részekre a B1, B2 és B3 eseményekkel! Tetszőleges A eseményt ez a darabolás diszjunkt (Bk·A) részekre oszt. P(B3 ) P(A|B3 ) A B3·A P(B3·A) B3 A A gráf start csúcsából induló élek megfelelnek a darabolásoknak. Az egyes élekre írt P(Bk) valószínűségek, a darabok mértékei az egészhez viszonyítva. A következő kétirányú élsorozatok azt mutatják, hogy az egyes Bk darabok mekkora része van A-ban illetve mekkora része nincs A-ban. Az élekre a feltételes valószínűségek kerülnek. A valószínűségek szorzás szabálya alapján a levelekhez vezető úton vett szorzatok a szorzat események valószínűségeit adják P(Bk·A) = P(A|Bk ) ·P(Bk ) Ha a szürkével jelölt sorok valószínűségeit összeadjuk, akkor megkapjuk A valószínűségét! PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
5
Bináris csatorna átmenet valószínűségei
Kódolás átvitel Vétel Események 0,4 0,95 A B 1 1 A = { az adó 1 jelet ad } 0,05 Bináris jelek érkezése Encoder Decoder 0,1 B = { a vevő 1 jelet vett } 0,6 0,9 A B P(A) = 0.4 P(A) = 0.6 P(B|A) = 0.95 P(B |A) = 0.05 P(B|A) = 0.1 P(B |A) = 0.9 Adott valószínűségek P(B)= mekkora az 1 jel vételének valószínűsége? Keresett valószínűségek P(A| B) = mekkora valószínűséggel továbbított 1 jelet az adó, feltéve hogy a vevő 1 jelet vett? PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
6
Útvonal valószínűségek szorzata
Bináris csatorna döntés fa diagramja Az adás bitjei A vétel bitjei Szorzat események Útvonal valószínűségek szorzata B ω1 = A·B 0.4 · 0.95 = 0.38 = P(1) P(B|A)= 0.95 A P(A)= 0.4 P(B|A)= 0.05 B ω2 = A·B 0.4 · 0.05 = 0.02 = P(2) Start P(A)= 0.6 B ω3 = A·B 0.6 · 0.1 = 0.06 = P(3) P(B|A)= 0.1 A P(B|A)= 0.9 B ω4 = A·B 0.6 · 0.9 = 0.54 = P(4) Összeg = 1.00 Az 1 jel vételének valószínűsége, a teljes valószínűség-tétel alapján P(B)= P(A·B) + P(A·B)= = 0.44 PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
7
Bayes-tétel BAYES - TÉTEL Legyen B1, B2, B3,…, Bn teljes eseményrendszer, azaz páronként egymást kizárók és összegük az Ω eseménytér: Bk·Bi=Ø ( ha k≠i ) és B1+ B2+ B3+…+ Bn = Ω. Ha az A esemény pozitív valószínűségű és k rögzített index 1 és n között, akkor Bizonyítás Felhasználva a feltételes valószínűség definícióját, a szorzás-szabályt és a teljes valószínűség-tételét kapjuk a Bayes-tétel állítását Ezzel igazoltuk a Bayes-tétel állítását. PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
8
Útvonal valószínűségek szorzatai adottak
Bináris csatorna inverz fa diagramja Cseréljük fel az eredeti fa oszlopait! Az adás bitjei Szorzat események Útvonal valószínűségek szorzatai adottak A teljes valószínűség-tétel alapján kaptuk! A vétel bitjei ω1 = A·B 0.38 = P(1) P(A|B)= 0.863 A B P(B)= 0.44 P(A|B)= 0.137 A ω3 = A·B 0.06 = P(3) Sorrendcsere történt! Start P(B)= 0.56 ω2 = A·B 0.02 = P(2) A P(A|B)= 0.035 B P(A|B)= 0.965 A ω4 = A·B 0.54 = P(4) Összeg = 1.00 P(A| B) = P(A·B) P(B) = 0.38 0.44 = 0.863 A Bayes-tétel alkalmazásával kapjuk a P(A|B) valószínűséget! PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
9
PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
Feladatok teljes valószínűség- és Bayes-tételre 1. Tekintsünk egy közúti szállítással foglalkozó céget vagy rendszert! A cég a vállalt szállítási kötelezettségeinek időnként a csúcsforgalom miatt nem tud eleget tenni. Ilyenkor a szállítási feladat meghiúsul, azt mondjuk, hogy a rendszer leáll. A cég a szállítással kapcsolatos feladatait 3 csoportba sorolja: alacsony, közepes és magas szintű szállítási kötelezettségek. Ezek a szállítás sürgősségével függnek össze. Az alábbi táblázat tartalmazza az egyes kötelezettségi szintek gyakoriságai alapján számolt valószínűségeket és a rendszer leállásának feltételes valószínűségeit, az egyes kötelezettségi szintnek megfelelő feltételek mellett (a) Határozzuk meg a rendszer leállásának valószínűségét! Rajzoljuk fel a feladat fa diagramját, amelyen tüntessük fel a rendszer működését is, mint a leállás ellentét eseményét! (b) Ha azt észlelték, hogy a rendszer leállt, akkor ezt a leállást mekkora valószínűséggel idézte elő egy közepes szintű kötelezettség? Rajzoljuk fel a feladat inverz fa diagramját! PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
10
PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
Feladatok teljes valószínűség- és Bayes-tételre 2. Négy egymást követő közlekedési lámpa szinkronizálási problémájával kapcsolatosan megfigyelték a következő adatokat. Minden egyes lámpa 50 másodperces periódusonként vált át pirosra és ekkor 30 másodpercig piros jelzést ad. A következő feltételes valószínűségeket mérték P(Sk+1|Sk) = és , k =1, 2, 3 esetén, ahol az Sk esemény azt jelöli, hogy a k-adik lámpa megállította a gépkocsivezetőt! A fa diagram felrajzolása segítségével számítsuk ki annak valószínűségét, hogy egy gépkocsivezetőt Mind a négy lámpa megállítja Egyik lámpa sem állítja meg, azaz „zöld hullámot” kap Legfeljebb egy lámpa tartóztatja fel. PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
11
PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
Feladatok teljes valószínűség- és Bayes-tételre 3. Három urnánk van. Minden urna tartalmaz 1 fehér golyót. Ez mellett az I. urna 1 fekete golyót, a II. urna 2 fekete golyót és a III. urna 3 fekete golyót tartalmaz. Egy urnát kiválasztunk találomra és a kiválasztott urnából kihúzunk egy golyót. A három urna kiválasztásának a valószínűségei rendre 1/6, ½ és 1/3. Ha tudjuk, hogy fehér golyót húztunk, akkor mekkora a valószínűsége, hogy egy adott urnából való a golyó! Használjuk az eredeti és az inverz fa diagramot a számításhoz! PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
12
PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
Feladatok teljes valószínűség- és Bayes-tételre 4. Egy szociológiai kísérlet abban áll, hogy 4 lepecsételt boríték mindegyikébe egy-egy megoldandó problémát tettek. Ezután megkérték a résztvevőket, hogy válasszanak egy borítékot és próbálják megoldani a problémát 10 percen belül. Kísérletek alapján tudjuk, hogy a legnehezebb problémát 0.1 valószínűséggel meg tudják oldani a résztvevők. A többi problémára vonatkozóan a valószínűségek rendre 0.3, 0.5 és 0.8. Tudjuk, hogy a csoportnak sikerült megoldani a problémát a megadott időn belül. Mekkora a valószínűsége, hogy a legnehezebb problémát kapták? Használjuk az eredeti és az inverz fa diagramot a számításhoz! PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
13
PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
Feladatok teljes valószínűség- és Bayes-tételre 5. Angliában egy adott helyen a jó időjárás esélye 20 %, míg a rossz időjárás a megfigyelések 80 %-ára teljesül. Ha egy adott nap az időjárás jó, akkor annak valószínűsége, hogy a következő nap is jó idő lesz az Ha egy adott napon rossz idő van, akkor annak valószínűsége, hogy a következő nap is rossz idő lesz 0.75. Ha ma jó idő van, akkor mi a valószínűsége annak, hogy tegnap is jó idő volt? Ha ma rossz idő van, akkor mi a valószínűsége annak, hogy tegnap is rossz idő volt? Használjuk az eredeti és az inverz fa diagramot a számításokhoz! PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
14
PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
Feladatok teljes valószínűség- és Bayes-tételre 6. Egy vizsgán minden kérdésre 4 választási lehetőség közül kell kiválasztani a helyes választ! (ún. multiple-choice teszt) Tegyük fel, hogy ha egy diák tudja a helyes választ, akkor 1 valószínűséggel a jót választja, míg ha találgat, akkor ¼ valószínűséggel válaszol helyesen. Tételezzük fel továbbá, hogy egy jó tanuló a kérdések 90%-ára tudja a választ, egy gyenge tanulónál ugyanez 50%. Ha egy jó tanuló egy kérdésre helyesen válaszolt, akkor mekkora a valószínűsége, hogy találgatással találta el a helyes választ? (1/37) Ha egy gyenge tanuló egy kérdésre helyesen válaszolt, akkor mekkora a valószínűsége, hogy találgatással találta el a helyes választ? (1/5) Használjuk az eredeti és az inverz fa diagramot a számításhoz! PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
15
PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
Feladatok teljes valószínűség- és Bayes-tételre 7. Egy tranzisztorokat tesztelő gép a hibás tranzisztort 0.95 valószínűséggel felismeri, de egy jó tranzisztort hibásnak minősít 0.1 valószínűséggel. Egy technikus tudja, hogy egy rádióban levő 10 tranzisztor közül 1 hibás (nem tudja, hogy melyik az). Kiválaszt egyet véletlenszerűen a 10 közül, majd teszteli és a gép azt mutatja, hogy hibás. Mekkora a valószínűsége, hogy a tranzisztor valóban hibás? Tegyük fel, hogy a gép azt mutatja a tesztelés során, hogy a tranzisztor jó. Mekkora a valószínűsége ekkor, hogy a tranzisztor mégis hibás? Használjuk az eredeti és az inverz fa diagramot a számításokhoz! PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
16
PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
Feladatok teljes valószínűség- és Bayes-tételre 8. Bizonyos fajta megfázás orvoslására az esetek ⅓ –ánál C vitamint, ½ részénél antibiotikumot míg 1/6 részben látszatgyógyszert (ún. placebo) alkalmaznak. A megfázást a C-vitamin az alkalmazott esetek ¼ részében meggyógyította, míg ugyanez az arány ½ és 3/5 volt az antibiotikum és a látszatgyógyszerek esetében. Ha egy ember nem gyógyult ki a megfázásából, mekkora a valószínűsége annak, hogy ennek a C-vitamin volt az oka? Ha egy illető kigyógyult a megfázásából, akkor mi a valószínűsége annak, hogy ez a gyógyulás a látszatgyógyszernek köszönhető? Használjuk az eredeti és az inverz fa diagramot a számításokhoz! PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
17
PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
Feladatok teljes valószínűség- és Bayes-tételre 9. Egy zenekutató megpróbálja meghatározni, hogy egy újonnan felfedezett barokk dalnak ki a zeneszerzője. Úgy gondolja, hogy egyforma valószínűséggel lehet a szerző Archangelo Spumani és a kevésbé ismert bátyja, Pistachio. A kérdés eldöntésének kulcsa a zeneszerzők által alkalmazott A-dúr és F-moll hangnemek gyakorisága. Ismert, hogy Archangelo az esetek 60% -ban A - dúrban, míg Pistachio az esetek 80%-ban F-mollban komponált. Ha a zenekutató által felfedezett zeneművet F-mollban írták, akkor mi a valószínűsége, hogy azt Archangelo komponálta? Illetve Pistachio komponálta? Használjuk az eredeti és az inverz fa diagramot a számításokhoz! PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
18
PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
Feladatok teljes valószínűség- és Bayes-tételre 10. Egy hivatal által szervezett pikniken 200 résztvevőből 150 fő evett csak egy fogást – krumpli salátát – 30 fő evett két fogásos és 20 fő evett három fogásos ételt (ezek között is szerepelt a krumpli saláta). Később a résztvevők közül sokan megbetegedtek, és felfedezték, hogy ennek oka a krumpli saláta volt. Az orvos úgy tapasztalta, hogy a résztvevők 0.3 valószínűséggel betegedtek meg. Ha valaki megbetegedett, akkor mekkora a valószínűsége, hogy 1, 2 vagy 3 fogást evett? Ha valaki nem betegedett meg, akkor mekkora a valószínűsége, hogy 1, 2 vagy 3 fogást evett? Használjuk az eredeti és az inverz fa diagramot a számításokhoz! PTE MIK Rendszer és Szoftvertechnológia Tanszék dr. Klincsik Mihály
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.