To make long stories short … from the last 24 years András Sebő, CNRS, G-SCOP, Grenoble Kathie: We would like the talks to be easy to understand. Jack prefers talks on stuff he should have known years ago but has forgotten or never got to.
2008
Integer Decomposition (ID) Polyhedron P has the ID property, if v k P, and v, k integer v= v 1 + … + v k, v 1,, …,v k P Z n Examples. ID: matchings in bipartite graphs independent sets of matroids by Jack’s matroid partition thm. NOT ID:
Projection of TU is not necessariIy TU Projection of ID is not necessariIy ID G Q = conv(PM(G)) PM(G):= set of perfect matchings of G projection P : ½ sum of colors 3 P The lift up is 3/2 in
Baum Trotter ‘77: A is TU Q:={y : yA c} is ID Projections of Q are also ID (S. august 2008) Z n’ Proof : Q Z n’, let n < n’ and P:= {(y 1, …, y n ) : y Q } Let z kP, z integer. z/k P, so z’: (z/k, z’) Q, so (z, kz’) kQ kz’ is a solution of y’A’ b’ (= kc – zA (all ; 1,...,n) ) So kz’ can be chosen to be integer. DONE Kathie’s and Jack’s coflows are box TDI and Projection of TU. Cameron, Edmonds (1992) Other appli cations ?
Generalizing Greene, Kleitman, Bessy-Thomasse I-II (Gallai’s conjecture, variant of Berge and Linials’conjectures) Theorem (S. 2007) max union of k stable sets ≥ min { |X| + k| C | : C set of circuits X = vertices uncovered by C } Corollaries: k=1, and k = integer rounding chromatic number = round up of …
1998
MINIMAL NONINTEGER 0-1 Minors : generalizing min-imp, min non-ideal A , A 0-1 matrices,n columns. A x 1 A x 1 x 0 Theorem: Minimal noninteger 1 frac point : - Minimal imperfect (vertex: constant 1/r vector) - Minimal nonideal (constant 1/r or degen proj …) - Mixed odd circuit Mixed odd circuit X 1 + X 2 1 X 2 + X 3 1
Divisibility Lemma Let A, B: 0-1, A r-regular AB= Then : either 1 = …= n =: or { 1, 2,…, n } = {0,r} Proof: 0 i r : r | i + n – 1 r+1 consec, Proof of the Theorem: =0; >1; r=2 … 1 1 2 1 … 1 … … … 1 … 1 n
2008
Waterloo Folklore Jack’s … T V(G). T-join : F E(G), where T=vertices of odd degree. Jack’s Chinese Postman Problem G connected, T V(G) even T-join. Every T-join can be edge-partitioned into paths whose end-points partition T. T-cut : {xy: x X, y Y} : {X,Y} T-odd partition of V. (G,T)=min{|F|: F T-join} (G,T)=max T-cut-packing = ? clothes oral teaching beard
Virtual Private Networks (VPN) Goyal, Olver and Shepherd (2008) proved the ‘VPN tree conjecture’ through the following : Theorem: G = (V,E) ; T, W V, T odd; w: F w T {w}-join and edge-disjoint for different w. Then r V s.t. edge-disj r,w paths (w W). Proof: V’= V {t}, E’ = E {tw: w W}, T’ = T {t}. FwFw w W T t Exercise: {X,Y} min T-cut x X T, y X T s.t. it is a min (x,y)-cut. (Hint:GH-tree ~Padberg-Rao, Rizzi’s T-pairing.) Apply to {t, V} :
2008
Seymour Graphs G=(V,E) s.t. for all T : (G,T) = (G,T) Eg bip; sp. Conjecture S’89, Proof: Ageev, Kostochka, Szigeti ’97. Particular case: G planar for all F E Cut Condition multiflow Factorcritical-contraction keeps it ! Theorem (Ageev, S., Szigeti) G Seymour It can be fact.-contracted to a bicritical graph Open : Recognition of Seymour graphs. v V : G-v is matchable bicritical : v V : G-v is factorcrit.
1985
Edmonds-Johnson Theorem on T-joins Quick proof of Seymour’s theorem on T-joins. Edmonds and Johnson’s theorem : G=(V,E) plane, 1-weighted, no ‘dual <0 circuit’ (cut condition) fractional multiflow ». D:
1990 ?
Allitas : Adott egy G irtlan gr W ponthalmaz (termink) 鳠 T ptlan ponthalmaz. Minden u \in W -re adott J_u ami T \Delta {u} -join gy, hogy ezek a J_u -k pnk 鮴 鬤 iszjunktak. Ekkor l 鴥 zik a gran egy olyan v pont, amibinden W-beli pont el 鲨 etdiszjunk utakon. Biz: Vegyunk fel egy plusz pontot, "t "-t, es kossuk ossze a W minden pontjaval, majd tegyuk bele T-be. Gt=(Vtn,Et) - vel illetve Tt-vel jeloljuk a kapott uj grafot es "T"- t. A feltetel szerint Gt-ben van k diszjunkt Tt-kotes, igy a minimalis Tt-vagas legalabb k elemu. Es akkor pontosan k elemu, mert \delta({t}) k-elemu Tt-vagas. Megmutatjuk, hogy *van olyan v \in V amitol "t"-t nem valasztja el k-nal kisebb vagas*. Ekkor kesz leszunk, mert akkor t es v kozott van k diszjunkt ut is (Menger) es ezek t-hez kapcsolodo elet elhagyva a v-bol a W kulonbozo pontjaiba mento k utat kapunk, vagyis egyet-egyet a W minden pontjaba. Sot, azt mutatjuk meg, hogy T-ben is van ilyen v pont: Lemma : G graf, T paros. Ha C min T-vagas akkor van olyan x, y\in T par amit C elvalaszt es C minimalis vagas x es y kozott. Biz: Legyen F egy folyam-ekv fa es H a T-kotese, tehat C \cap H paratlan. *H eldiszjunkt utakra particionalhato, amelyek vegpontjai mind T-ben vannak.* Igy lesz olyan ut ami C-be paratlan sok ellel metsz, es igy az x, y vegpontjait a C elvalasztja, x,y\in T. KESZ
A particular-stable-set polytope max {1 T x : x(C) |E(C) B| cycle C, x 0} Kathie and Jack : particular coflow polytope, so projection of TU, box-TDI, integer vertices. (Nicest proof for this case: by Pierre Charbit.) Bessy-Thomassé-Knuth order arc uv x(u) + x(v) x(C) |E(C) B| = 1 The integer vertices are stable sets. Moreover the ID property (S complicated). u v C