Teachers Programme, CERN, 2014. aug. 21. 1 Bevezetés a nehézion-fizikába (Introduction to heavy ion physics) Veres Gábor (CERN-PH.

Slides:



Advertisements
Hasonló előadás
2007.XII. 6.Csörg ő Tamás A nehézion-fizika „aranykora” A PHENIX – Magyarország első 5 évének eredményei Csörg ő Tamás témavezet ő.
Advertisements

Tamás Kincső, OSZK, Analitikus Feldolgozó Osztály, osztályvezető A részdokumentumok szolgáltatása az ELDORADO-ban ELDORADO konferencia a partnerkönyvtárakkal.

Kamarai prezentáció sablon
„Esélyteremtés és értékalakulás” Konferencia Megyeháza Kaposvár, 2009
Erőállóképesség mérése Találjanak teszteket az irodalomban
2010. augusztus 16.Hungarian Teacher Program, CERN1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB
MATEMATIKA Év eleji felmérés 3. évfolyam
Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium Bemutatkozik a CERN 05 Novembre 2003.
Humánkineziológia szak
Mellár János 5. óra Március 12. v
6) 7) 8) 9) 10) Mennyi az x, y és z értéke? 11) 12) 13) 14) 15)
Elektromos mennyiségek mérése
Koordináta transzformációk
Utófeszített vasbeton lemez statikai számítása Részletes számítás
A mikrorészecskék fizikája
A mikrorészecskék fizikája 2. A kvarkanyag
A tételek eljuttatása az iskolákba
Elektronikai Áramkörök Tervezése és Megvalósítása
Mérés és adatgyűjtés laboratóriumi gyakorlat Karakterisztikák mérése 1 Makan Gergely, Mingesz Róbert, Nagy Tamás V
Elektronikai Áramkörök Tervezése és Megvalósítása
VÁLOGATÁS ISKOLÁNK ÉLETÉBŐL KÉPEKBEN.
Védőgázas hegesztések
Volumetrikus szivattyúk
Hősugárzás Radványi Mihály.
Szerkezeti elemek teherbírásvizsgálata összetett terhelés esetén:
Sárgarépa piaca hasonlóságelemzéssel Gazdaság- és Társadalomtudományi kar Gazdasági és vidékfejlesztési agrármérnök I. évfolyam Fekete AlexanderKozma Richárd.
Dr. Csurgai József Gyorsítók Dr. Csurgai József
Az anyagok alkotórészei
Következik a Z-bozonnal történő részletes ismerkedés. Ez lesz a délutáni méréseik tárgya is ! Most igazán tessék figyelni és bátran kérdezni is ! Lesz.
1 A napszélben áramló pozitív töltésű részecskék energia spektruma.
HOGYAN CSINÁLJUNK KVARKANYAGBÓL HIGGS BOZONT? Csörgő T. 1 | 17 Csörgő Tamás, MTA Wigner FK Török Csaba, Csörgő Judit (ELTE), Angela Melocoton (BNL) és.
NOVÁK TAMÁS Nemzetközi Gazdaságtan
DRAGON BALL GT dbzgtlink féle változat! Illesztett, ráégetett, sárga felirattal! Japan és Angol Navigáláshoz használd a bal oldali léptető elemeket ! Verzio.
Lineáris egyenletrendszerek (Az evolúciótól a megoldáshalmaz szerkezetéig) dr. Szalkai István Pannon Egyetem, Veszprém /' /
szakmérnök hallgatók számára
2. A KVANTUMMECHANIKA AXIÓMÁI 1. Erwin Schrödinger: Quantisierung als Eigenwertproblem (1926) 2.
Logikai szita Izsó Tímea 9.B.
A szemcsehatárok tulajdonságainak tudatos módosítása Szabó Péter János BME Anyagtudomány és Technológia Tanszék Anyagvizsgálat a gyakorlatban (AGY 4) 2008.
Az LPQI rész a Partner Az LPQI-VES társfinanszírozója: Dr. Dán András Az MTA doktora, BME VET Meddőenergia kompenzálás elmélete és alkalmazása.
3. A HIDROGÉNATOM SZERKEZETE
Veszprémi Viktor Wigner Fizikai Kutatóközpont OTKA NK81447
Title Zoltán Fodor KFKI – Research Institute for Particle and Nuclear Physics CERN.
Kérdésekre válaszok Zoltán Fodor KFKI – Research Institute for Particle and Nuclear Physics CERN.
HOGYAN CSINÁLJUNK KÁRTYÁBÓL HIGGS BOZONT? Csörgő T. 1 | 17 Csörgő Tamás MTA Wigner Fizikai Kutatóközpont wigner.mta.hu.
2007. május 22. Debrecen Digitalizálás és elektronikus hozzáférés 1 DEA: a Debreceni Egyetem elektronikus Archívuma Karácsony Gyöngyi DE Egyetemi és Nemzeti.
A pneumatika alapjai A pneumatikában alkalmazott építőelemek és működésük vezérlő elemek (szelepek)
Csurik Magda Országos Tisztifőorvosi Hivatal
A klinikai transzfúziós tevékenység Ápolás szakmai ellenőrzése
Torlódás (Jamming) Kritikus pont-e a J pont? Szilva Attila 5. éves mérnök-fizikus hallgató.
QualcoDuna interkalibráció Talaj- és levegövizsgálati körmérések évi értékelése (2007.) Dr. Biliczkiné Gaál Piroska VITUKI Kht. Minőségbiztosítási és Ellenőrzési.
A Van der Waals-gáz molekuláris dinamikai modellezése Készítette: Kómár Péter Témavezető: Dr. Tichy Géza TDK konferencia
1. Melyik jármű haladhat tovább elsőként az ábrán látható forgalmi helyzetben? a) A "V" jelű villamos. b) Az "M" jelű munkagép. c) Az "R" jelű rendőrségi.
Csörgő Tamás Magyarok az Ősanyag kutatásában - Csörgő Tamás (MTA KFKI RMKI, Budapest) Fókusz: RHIC legújabb eredményei A magyar részvétel PHENIX - Magyarország.
Üledékes sorozatok tagolás - agyagindikátorok
Mikroökonómia gyakorlat
> aspnet_regiis -i 8 9 TIPP: Az „Alap” telepítés gyors, nem kérdez, de később korlátozhat.
A KÖVETKEZŐKBEN SZÁMOZOTT KÉRDÉSEKET VAGY KÉPEKET LÁT SZÁMOZOTT KÉPLETEKKEL. ÍRJA A SZÁMOZOTT KÉRDÉSRE ADOTT VÁLASZT, VAGY A SZÁMOZOTT KÉPLET NEVÉT A VÁLASZÍV.
1 Az igazság ideát van? Montskó Éva, mtv. 2 Célcsoport Az alábbi célcsoportokra vonatkozóan mutatjuk be az adatokat: 4-12 évesek,1.
Bevezetés a nehéz-ion fizikába Zoltán Fodor KFKI – R MKI CERN.
Elemi részecskék, kölcsönhatások
Az atommag alapvető tulajdonságai
05 Novembre év a részecskefizika kutatásban Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium.
Relativisztikus nehézion ütközések Relativistic Heavy Ion Collider (RHIC), Brookhaven, New York, USA 200GeV/nukleon, kerület kb. 4 km.
Teachers Programme, CERN, aug Bevezetés a nehézion-fizikába (Introduction to heavy ion physics) Veres Gábor (CERN-PH.
Csörgő Tamás, MTA KFKI RMKI 1 Csengery VE, Gyöngyös, 2006/3/11 Csörgő Tamás MTA KFKI RMKI Magyarok az Ősanyag nyomában A legforrób ismert anyag: folyadék.
Csörgő Tamás, MTA KFKI RMKI 1 SzMMF, Kolozsvár, 2006/11/3 Csörgő Tamás MTA KFKI RMKI Folyadék volt a korai Univerzum 2005 vezető eseménye a fizikában.
2012 október 3.CERN201 NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja László András Wigner Fizikai Kutatóintézet, Részecske- és Magfizikai Intézet.
Teachers Programme, CERN, aug Bevezetés a nehézion-fizikába (Introduction to heavy ion physics) Veres Gábor (CERN-EP.
Magerők.
Előadás másolata:

Teachers Programme, CERN, aug Bevezetés a nehézion-fizikába (Introduction to heavy ion physics) Veres Gábor (CERN-PH és ELTE) Hungarian Teachers Programme CERN, augusztus 21.

Teachers Programme, CERN, aug Miért kutatunk nehézionokat? A legnagyobb energiájú, legkomplexebb (0.1 mJ) Kvark-bezárás tanulmányozása Mikromásodpercekkel az Ősrobbanás után… barionok mezonok QCD: kvantum-színdinamika Erős kölcsönhatás közvetítője: gluon

Teachers Programme, CERN, aug QCD A kölcsönhatás erőssége az impulzus-átadástól (méretskálától) függ: Nagy impulzusok: aszimptotikus szabadság Nagy távolságok: nagyon erős, kvarkbezárás Színes húrok…

Teachers Programme, CERN, aug Kvark-gluon plazma Nagy hőmérsékleten vagy nagy sűrűségnél a kvarkok közötti kölcsönhatás gyengül A kvarkok és gluonok ekkor kiszabadulhatnak a barionokból és mezonokból Ehhez szükséges –Energiasűrűség: kb. 1 GeV/fm 3 vagy –Barionsűrűség: kb. 1 barion/fm 3 (magsűrűség ötszöröse) Rács-QCD T  /T 4

Teachers Programme, CERN, aug Fázisdiagram: erősen kölcsönható anyag

Teachers Programme, CERN, aug Nehézion-ütközések - laboratóriumok BNL (USA), AGS: p (33 GeV), Au (14.6 GeV), fix céltárgy CERN (CH), SPS: p (450 GeV), Pb (158 GeV), fix céltárgy –Kísérletek: NA49, NA61,… BNL, RHIC: Au (200 GeV) –Kísérletek: STAR, PHENIX, PHOBOS, BRAHMS CERN, LHC: Pb (2760 GeV) –Kísérletek: ALICE, ATLAS, CMS

Teachers Programme, CERN, aug Nehézion-ütközés laboratóriumban

Teachers Programme, CERN, aug Milyen változókat használunk? proton-nyaláb Transzverzális impulzus: p T Pszeudorapiditás:  = - ln tan(  /2) pTpT  proton-nyaláb p  Henger-koordináták: azimutszög: 

Teachers Programme, CERN, aug Centralitás N part : résztvevő nukleonok száma N coll : páronkénti nukleon-nukleon ütközések száma Gyakran a teljes hatáskeresztmetszet százalékában adjuk meg

Teachers Programme, CERN, aug A nehézion-ütközések globális jellemzői

Teachers Programme, CERN, aug Töltött részecskék száma Centralitás-függés: - Hasonló a RHIC eredményeihez  s-függés: - p+p, Pb+Pb: hatványfüggvény Energiasűrűség becsülhető, kb. 15 GeV/fm 3 !

Teachers Programme, CERN, aug Időfejlődés

Teachers Programme, CERN, aug „Kémiai” összetétel

Teachers Programme, CERN, aug Fázisdiagram RHIC SPS AGS

Teachers Programme, CERN, aug Hőmérséklet Kis transzverzális impulzusnál termális spektrumokat látunk (proton-proton ütközésekben)

Teachers Programme, CERN, aug Hőmérséklet+radiális folyás Nehézionok ütközésénél: Nagyobb m → nagyobb T (laposabb spektrumok)

Teachers Programme, CERN, aug Értelmezés x y vv vv A kollektív mozgás rárakódik a termális mozgásra A kialakuló nagy nyomás miatt Tehát fontos a különböző tömegű részecskék mérése Ütközési energiával nő a radiális folyás sebessége ( c)

Teachers Programme, CERN, aug Elliptikus folyás

Teachers Programme, CERN, aug Hidrodinamikai értelmezés Hydrodynamic limit STAR PHOBOS Hydrodynamic limit STAR PHOBOS RQMD Centrális ütközések: gyors termalizáció, tökéletes folyadék Periférikus ütközések: nem teljes termalizáció Hadronikus modell nem tudja leírni (RQMD)

Teachers Programme, CERN, aug Elliptikus folyás Nagy p T : a részecskék gyorsan kiszöknek, nincs termalizáció A hidrodinamikai modellek jól leírják a tömegfüggést is

Teachers Programme, CERN, aug Dileptonok Az ütközés korai szakasza Nem hatnak erősen kölcsön

Teachers Programme, CERN, aug Kvarkónium: szín-árnyékolás q q q q Vákuum: QGP: D : a kötött állapot maximális mérete, Hőmérséklet növelésével csökken (de: regeneráció)

Teachers Programme, CERN, aug Elnyomás mérése Összehasonlítás p+p ütközésekkel: Ha nincs módosulás, akkor R AA =1 SPS  RHIC… rekombináció?

Teachers Programme, CERN, aug Y elnyomás

Teachers Programme, CERN, aug Kemény szórások felhasználása

Teachers Programme, CERN, aug Kemény szórások nehézion-ütközésekben Cél: a létrejött folyadék állapot (közeg) tulajdonságait vizsgálni Probléma: a közeg élettartama nagyon rövid (O(fm/c)), nem használhatunk külső „sugárforrást” a vizsgálatához Megoldás: kihasználjuk a nagy p T jet-ek, γ/W/Z, kvarkónium állapotok nagy hatáskeresztmetszetét az LHC energián, és felhasználjuk ezeket magukban az ütközésekben. Külső sugárzás anyag

Teachers Programme, CERN, aug Energiaveszteség A plazmán áthaladó partonok energiát veszíthetnek –Többszörös szórással –Gluon sugárzással „Quenched” spektrum Spektrum: pp

Teachers Programme, CERN, aug Jet-ek: mennyire erősen kölcsönható ez az anyag?

Teachers Programme, CERN, aug Jet energia aszimmetria A partonok energiaveszteségea jet-párok energia-egyensúlyának felborulásában jelenik meg, centrális Pb+Pb ütközésekben PbPb PbPb ppp p

Teachers Programme, CERN, aug Mennyi energiát vesztenek a jet-ek? p+pPb+Pb ???

Teachers Programme, CERN, aug Jet-ek nukleáris módosulási faktorai Elnyomás: nincs szignifikáns p T –függés PbPb PbPb

Teachers Programme, CERN, aug PbPb PbPb Töltött hadronok, R AA

Teachers Programme, CERN, aug Nukleáris módosulási faktorok Ugyanazt a parton p T tartományt mintavételezik jet-ek Megj: a jet-ek p+p és Pb+Pb ütközésekben hasonlóan fragmentálódnak (ld. később) töltött hadronok

Teachers Programme, CERN, aug Hogyan jellemezhető a jet-ek energiavesztesége „kalibrált” módon? ??? Pb+Pb

Teachers Programme, CERN, aug Hogyan jellemezhető a jet-ek energiavesztesége „kalibrált” módon? Pb+Pb

Teachers Programme, CERN, aug  -jet: u, d kvark energiavesztesége A foton szerepe: Azonosítja a jet-et: u,d kvark jet Megadja az eredeti kvark mozgási irányát Megadja a kvark kezdeti energiáját jet (98 GeV) foton (191GeV)

Teachers Programme, CERN, aug  -jet korrelációk A fotonok nem módosulnak, így energiamérést biztosítanak A jet-ek és fotonok p T -aránya (x J  =p T jet /p T  ) a jet energia- veszteségét közvetlenül méri Az x J  eloszlás fokozatos centralitásfüggését tapasztaljuk x J  PbPb PbPb

Teachers Programme, CERN, aug  -jet korrelációk Nincs  -dekorreláció Növekvő p T -aszimmetria Kevesebb jet partner A jet-ek energiájuk ~14%-át veszítik el A fotonok ~20%-a elveszti a jet partnerét PbPb PbPb x J  =p T jet /p T  R J  = a jet partnerrel (>30 GeV/c) rendelkező fotonok aránya

Teachers Programme, CERN, aug A nehéz kvark-jetek is vesztenek energiát? ??? Pb+Pb p+p b b Pb+Pb p+p udsg

Teachers Programme, CERN, aug Pb+Pb p+p A b-jetek aránya az összes jethez képest b-jet részarány: hasonló érték p+p és Pb+Pb ütközésekben → b-jet energiaveszteség tehát hasonló a könnyű kvarkok energiaveszteségéhez (R AA  0.5), egyelőre nagy szisztematikus hibával. CMS PAS HIN

Teachers Programme, CERN, aug Hogyan módosulnak a jetek? Megváltozik az alakjuk vagy a fragmentációjuk? r  Jet alak: p T -eloszlás az  -  távolság függvényében a jet tengelyétől (r): Jet fragmentációs függvény: A részecskék impulzusának eloszlása a jet tengelyére vetítve, a  változót használva:  =ln(p jet /p || track ): nagy  kis 

Teachers Programme, CERN, aug Részecskék p T -eloszlása jet-eken belül Nagy p T (kis  ): nincs változás a p+p ütközésekhez képest Centrális Pb+Pb: részecskék többlete p+p-hez képest (nagy  ) PbPb PbPb (1/GeV)

Teachers Programme, CERN, aug p+Pb ütközések: jan-feb. Referencia-mérés (?)

Teachers Programme, CERN, aug Jet-pár egy p+Pb ütközésben, √s NN = 5 TeV p Pb Hamarosan új eredmények várhatók…

Teachers Programme, CERN, aug Jet-pár egy p+Pb ütközésben, √s NN = 5 TeV vezető jet: E T = GeV Jet párja: E T = GeV

Teachers Programme, CERN, aug J/ψ jelölt p+Pb ütközésben, √s NN = 5 TeV

Teachers Programme, CERN, aug ϒ (1S) jelölt p+Pb ütközésben, √s NN = 5 TeV

Teachers Programme, CERN, aug Z jelölt (+jet) p+Pb ütközésben, √s NN = 5 TeV

Teachers Programme, CERN, aug Kétrészecske-korrelációk definiálása Event 1 Event 2 Párok egyazon esemény ből Kevert esemé nyek Jel-párok eloszlása:Háttér-párok eloszlása Az asszociált hadronok triggerenkénti száma: Δη = η 1 -η 2 Δφ = φ 1 -φ 2

Teachers Programme, CERN, aug p+Pb: a “hegygerinc” újra felbukkant! p Pb p+p 7 TeV Sokkal nagyobb mint p+p ütközésekben A fizikai magyarázat még nem teljesen tisztázott N ≡ a töltött részecskék száma (p T >0.4 GeV/c)

Teachers Programme, CERN, aug Azok a részecskék, amelyek ugyanabban az időzónában vannak, de nagyon távoli szélességi körök mentén, kapcsolatban vannak! …Milyen mechanizmus lehet a telefonzsinór? ?! p p Az effektus szemléltetése

Teachers Programme, CERN, aug Újabb meglepetés p+Pb ütközésekben Nagy p T : több részecske keletkezett, mint amit a proton-proton ütközésekből várunk. Semmilyen modell nem reprodukálja.

Teachers Programme, CERN, aug NA61, SPS gyorsító: kritikus pont keresése, kvark-kiszabadulás kutatása PHENIX, RHIC gyorsító: tökéletes folyadék vizsgálata, energia-scan, stb. ALICE, LHC gyorsító: kiváló részecske- azonosítás CMS, LHC: kiváló jet, (di)müon, foton, korrelációs mérési lehetőségek Magyar részvétel

Teachers Programme, CERN, aug Összefoglalás A nehézionfizika az anyag új fázisával foglalkozik Az elméleti fizikai kevesebb támpontot ad, mint a részecskefizikában általában – de épp ez a szépsége A kísérleti eredmények sokszor okoznak meglepetést (a jóslatokhoz képest) A magyar részvétel nemzetközi szinten is jelentős Köszönöm a figyelmet!