Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 A bipoláris tranzisztor.

Slides:



Advertisements
Hasonló előadás
MIKROELEKTRONIKA, VIEEA306
Advertisements

Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Termikus kérdések, termikus elvű alrendszerek.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke A programozás alapjai 1. (VIEEA100) 9. előadás.
A bipoláris tranzisztor és alkalmazásai
A térvezérelt tranzisztorok I.
Bipoláris integrált áramkörök alapelemei
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke A termikus tesztelés Székely Vladimír.
A bipoláris tranzisztor III.
A bipoláris tranzisztor II.
Képfeldolgozás - esettanulmányok
Analóg alapkapcsolások
A bipoláris tranzisztor V.
Budapesti Műszaki és Gazdaságtudományi Egyetem
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke 1. zárthelyi megoldásai október 18.
A bipoláris tranzisztor modellezése
MEGÚJULÓ ENERGIAFORRÁSOK BIOMASSZA
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék R „Big Data” elemzési módszerek Kocsis Imre
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke A termikus tesztelés Székely Vladimír.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Integrált mikrorendszerek II. MEMS = Micro-Electro-
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Integrált mikrorendszerek II. MEMS = Micro-Electro-
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Az elektrosztatikus mozgatás Székely Vladimír Mizsei.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke IC layout tervek tesztelése.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke IC layout tervek tesztelése.
Bipoláris integrált áramkörök alapelemei Elektronika I. BME Elektronikus Eszközök Tanszéke Mizsei János 2004.március.
A bipoláris tranzisztor IV.
MIKROELEKTRONIKA, VIEEA306
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 Integrált mikrorendszerek:
MIKROELEKTRONIKA, VIEEA306
MIKROELEKTRONIKA, VIEEA306
A térvezérelt tranzisztorok I.
MIKROELEKTRONIKA, VIEEA306
MIKROELEKTRONIKA, VIEEA306
MIKROELEKTRONIKA, VIEEA306
MIKROELEKTRONIKA, VIEEA306
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 Technológia: alaplépések,
Bipoláris technológia Mizsei János Hodossy Sándor BME-EET
A bipoláris tranzisztor I.
ELEKTRONIKA I. ALAPÁRAMKÖRÖK, MIKROELEKTRONIKA
Analóg alapkapcsolások
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 MOS áramkörök: CMOS áramkörök,
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 A bipoláris IC technológia.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika Laboratórium Tájékoztató
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 Integrált áramkörök: áttekintés,
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 Félvezető fizikai alapok.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke 2. zárthelyi megoldásai december 2.
A bipoláris tranzisztor és alkalmazásai
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke 1. zárthelyi megoldásai október 11.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke 1. zárthelyi megoldásai október 10.
MIKROELEKTRONIKA, VIEEA306
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika Laboratórium Tájékoztató
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 Technológia: alaplépések,
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 A pn átmenet működése: Sztatikus.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Zárthelyi előkészítés október 10.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA /2009 I. félév Követlemények.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA /2012 I. félév Követelmények.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA /2013 I. félév Követelmények.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA /2011 I. félév Követelmények.
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika Laboratórium Tájékoztató
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Minőségbiztosítás a mikroelektronikában A monolit technika.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Termikus hatások analóg integrált áramkörökben Esettanulmány:
Technische und Wirtschaftswissenschaftliche Universität Budapest Lehrstuhl für Elektronische Bauelemente MIKROELEKTRONIK, VIEEAB00.
Zárthelyi előkészítés
Előadás másolata:

Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 A bipoláris tranzisztor II.

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET A beépített tér, hatásfokok ► Beépített tér számítása ► Injektálási és transzport hatásfok

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET A beépített tér számítása A bázisban gradiense van a lyuksűrűségnek A lyukak nem áramlanak Kell legyen egy térerősség, amely az egyensúlyt tartó sodródási áramot kelti!

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET A beépített tér számítása

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET A beépített tér számítása PÉLDA Számítsuk ki a bázis beépített poten- ciálját az alábbi adatok ismeretében: N B (0) = /cm 3, N B (w B ) = /cm 3

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET Injektálási- és transzporthatásfok Injektálási hatásfok: Transzport hatásfok: vagy emitter hatásfok

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET Az emitterhatásfok számítása Homogén bázisú tranzisztorral számolunk

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET Az emitterhatásfok számítása Inhomogén adalékolásnál: Gummel szám

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET A transzporthatásfok számítása Homogén bázisú tranzisztorral számolunk

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET Emitter- és transzporthatásfok Számítsuk ki az alábbi adatokkal rendelkező, homogén bázisú tranzisztor emitter- és transzport hatásfokát, valamint áramerősítését! N E = /cm 3, w E = 2  m, N B = 4  /cm 3, w B = 1,5  m, D n =0,0026 m 2 /s, D p = 0,0011 m 2 /s,  n = s. PÉLDA

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET A tranzisztor üzemmódjai, Ebers-Moll modell

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET A tranzisztor üzemmódjai Normál aktív Inverz aktív TelítésLezárás EB: nyitva CB: zárva EB: zárva CB: nyitva EB: nyitva CB: nyitva EB: zárva CB: zárva

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET Az Ebers - Moll modell Helyettesítés a normál aktív beállításban:

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET Az Ebers - Moll modell Helyettesítés az inverz aktív beállításban:

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET Az Ebers - Moll modell Telítéses üzemben a két modellt szuperponáljuk:

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET Az Ebers - Moll egyenletek

Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke Mikroelektronika - A bipoláris tranzisztor II. © Poppe András & Székely Vladimír, BME-EET Az Ebers - Moll egyenletek