Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Az elektrosztatikus mozgatás Székely Vladimír Mizsei - Székely - Zólomy: Integrált mikrorendszerek
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 2 Az elektrosztatikus erőhatás
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 3 Az elektrosztatikus erőhatás Példa Számítsuk ki egy síkkondenzátornak tekinthető mikroszerkezet két elektródája közötti erőhatást! Az elektródák felülete A=0,01 mm 2, távolságuk s=2 m, a feszültség 100V. A méretcsökkentéssel az elektrosztatikus erőhatás egyre hatékonyabbá válik!
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 4 A fésűs meghajtó Nézzük meg, hogy mi a legcélszerűbb kialakítása az elektrosztatikus mozgató szerkezetnek! Céljaink: nagy erőhatást szeretnénk, tehát dC/dx nagy legyen, hosszabb elmozdulásnál is állandó erőt szeretnénk, dC/dx tehát ne változzék, miközben a mozgó elektróda elmozdul.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 5 A fésűs meghajtó
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 6 A fésűs meghajtó
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 7
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 8
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 9 A fésűs meghajtó - az erőhatás
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 10 A fésűs meghajtó - példa A 2. poli vastagsága w = 2 m. A fogak hosszúsága 40 m, szélessége 3 m, a légrés szélessége s = 3 m. A rugó-szalagok hosszúsága 150 m, szélességük 2 m. A fésűfogak száma 25, tehát N = 50. N/V 2, 1V hatása Se = 0,71 m/N m/V 2
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 11
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 12
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 13 A rugóállandó megállapításának másik útja lehet a rezonancia frekvenciából való visszaszámolás. A mért rezonancia frekvencia f 0 = 20 kHz volt. A mozgórész teljes tömegét a geometriai adatokból és a szilícium sűrűségéből számolhatjuk ki. Ez a számítás a kg eredményre vezetett. A frekvenciát az alábbi képlet adja: m/N
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 14
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 15 A DMD eszköz vizsgálata DMD = Digital Micromirror Device
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 16 A DMD eszköz vizsgálata A működési elv Árnyalatok: impulzus szélesség moduláció Színes kép: forgó RGB tárcsa
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 17 A DMD eszköz vizsgálata Számoljunk! Mozgókép, villódzásmentes megjelenítés: 50 kép/s, 20 ms/kép a vezérlő impulzus szélességének lépése: 64 szürkeárnyalat, 20/64 = 0,31 ms Ugyanez színes képnél: 3x50=150 kép/s, 0,1 ms lépés A tükör átbillenése s lehet! Hányszor billen? 150/sec, /óra, kb /év !
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 18 A DMD eszköz vizsgálata Torziós függesztés, a tükör nélkül A felépítés Pl. 20x20 um tükrök
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 19 A DMD eszköz vizsgálata Számítások
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 20 A DMD eszköz vizsgálata Példa x 1 = 10 m x 2 = 20 m w = 40 m d o = 2 m U = 20 V. x a = 15 m C o = 1,77 fF M = 2,64 [mN]
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 21 A DMD eszköz vizsgálata M = 2,64 [mN] A visszatérítő nyomaték
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke BME-VIK villamosmérnöki szak MIKROMECHANIKA Mizsei - Székely - Zólomy: Integrált mikrorendszerek 22 A DMD eszköz vizsgálata A billenési idő becslése Egyszerűsítés: M átl = Nm = M átl / = /5.79 = 1,73 10 9 s -2 =15 o = 0,26 rad d=1 m, =2,7 kg/dm 3