Dr. Varga Beatrix egyetemi docens

Slides:



Advertisements
Hasonló előadás
Dixon Próbadb.Valószínűségi szint (p%) n10%5%1%7.3?4321 7? ,890,940,99pH7,07,27,3 4 0,68 0,770,89n=4 r 10 = (7,3-7,3)/(7,3-7,0) = 0 r 10 =(x 1 -x.
Advertisements

Kvantitatív Módszerek
TÁRSADALOMSTATISZTIKA III. Sztochasztikus kapcsolatok I. Előadó: Prof. Dr. Besenyei Lajos.
Szigorlati mintafeladat megoldása (folytatás)
Kvantitatív módszerek
3. Két független minta összehasonlítása
Az új történelem érettségiről és eredményeiről augusztus Kaposi József.
A tételek eljuttatása az iskolákba
Főkomponensanalízis Többváltozós elemzések esetében gyakran jelent problémát a vizsgált változók korreláltsága. A főkomponenselemzés segítségével a változók.
Összefüggés vizsgálatok
Gazdaságelemzési és Statisztikai Tanszék
Statisztika II. VI. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
1. IS2PRI2 02/96 B.Könyv SIKER A KÖNYVELÉSHEZ. 2. IS2PRI2 02/96 Mi a B.Könyv KönyvelésMérlegEredményAdóAnalitikaForintDevizaKönyvelésMérlegEredményAdóAnalitikaForintDeviza.
Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.
Asszociáció.
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Hipotézisvizsgálat Dr. Varga Beatrix egy. docens.
Méréskiértékelés, matematikai statisztika
Sárgarépa piaca hasonlóságelemzéssel Gazdaság- és Társadalomtudományi kar Gazdasági és vidékfejlesztési agrármérnök I. évfolyam Fekete AlexanderKozma Richárd.
100-as szög méreteinek gyakorisága (n = 100) db mm.
C = C/Y Ĉ=∆C/∆Y A fogyasztási függvény Reáljövedelem Y
Dr. Szalka Éva, Ph.D.1 Statisztika II. VI.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Fekete László Született: Csillagjegye: Vízöntő
szakmérnök hallgatók számára
A évi demográfiai adatok értékelése
3. előadás Heterogén sokaságok Szórásnégyzet-felbontás
Matematikai statisztika Készítették: Miskoltzy Judit Sántha Szabina Szabó Brigitta Tóth Szabolcs Török Tamás Marketing Msc I. évf., I. félév, levelező.
Anyagok 3. feladat 168. oldal.
41. feladat Könyvviteltan szemináriumi és gyakorló feladatok Budapesti Corvinus Egyetem, Számvitel tanszék 2007/2008. tanév.
41. feladat Könyvviteltan szemináriumi és gyakorló feladatok Budapesti Corvinus Egyetem, Számvitel tanszék 2007/2008. tanév.
Kalkuláció 13. feladat TK 69. oldal.
Logikai szita Izsó Tímea 9.B.
LENDÜLETBEN AZ ORSZÁG A Magyar Köztársaság kormánya.
Kvantitatív Módszerek
1 Szóródás Példák. 2 Szóródás munkatábla Árak nagysága (eЄ) xixi fifi didi
Standardizálás Példák.
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Becslés Dr. Varga Beatrix egy. docens.
Dr. Varga Beatrix egyetemi docens
7. Házi feladat megoldása
Gazdaságstatisztika Korreláció- és regresszióelemzés 20. előadás.
Érettségi jelentkezések és érettségi eredmények 2008 Tanévnyitó értekezlet Érettségi jelentkezések - érettségi eredmények augusztus 29.
Következtető statisztika 9.
A sztochasztikus kapcsolatok (Folyt). Korreláció, regresszió

Két kvantitatív változó kapcsolatának vizsgálata
Kutatási eredmények és fehér foltok a migránsok munkaerő-piaci beilleszkedésének kutatásában Kováts András MTAKI.
A klinikai transzfúziós tevékenység Ápolás szakmai ellenőrzése
Tanulói utánkövetés 2009/2010. A 2009/2010-es tanévben iskolánkban 210 tanuló végzett. 77 fő a szakközépiskola valamelyik tagozatán 133 fő szakmát szerzett.
Könyvviteltan szemináriumi és gyakorló feladatok
Kvantitatív elemzés a deliberáció során készült adatfile-okból Dés Júlia, Koltai Júlia és Rényi Dániel.
TÁRSADALOMSTATISZTIKA Sztochasztikus kapcsolatok II.
1. Melyik jármű haladhat tovább elsőként az ábrán látható forgalmi helyzetben? a) A "V" jelű villamos. b) Az "M" jelű munkagép. c) Az "R" jelű rendőrségi.
6. előadás.
GAZDASÁGI ADOTTSÁGOK ÉS FEJLŐDÉSI IRÁNYOK A délkelet-európai országok Novák Tamás MTA – VKI május 16.
Sztochasztikus kapcsolatok
A kombinációs táblák (sztochasztikus kapcsolatok) elemzése
Kvantitatív módszerek
Bevezetés a Korreláció & Regressziószámításba
Korrelációszámítás 1. hét.
2011/2012 tanév félévi statisztikai adatai. Hiányzások, mulasztások a tanév során (az első 20) Osztály Egy főre eső igazolt órák száma Egy főre eső.
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Regresszió-számítás március 30. Dr. Varga Beatrix egyetemi.
Korrelációs kapcsolatok elemzése
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Parciális korreláció Petrovics Petra Doktorandusz.
3. hét Asszociáció.
A TÁRSADALMI JÓL- LÉT KÉRDÉSEINEK ÖSSZEHASONLÍTÁSA EGYES SZOLGÁLTATÓ SZEKTOROKBAN Készítette: Folmegné Czirák Julianna
Gazdaságstatisztika Gazdaságstatisztika Korreláció- és regressziószámítás II.
Részekre bontott sokaság vizsgálata, gyakorló feladatok
Gazdaságstatisztika Konzultáció a korreláció- és regressziószámítás, idősorok elemzése témakörökből.
Dr. Varga Beatrix egyetemi docens
Dr. Varga Beatrix egyetemi docens
Előadás másolata:

Dr. Varga Beatrix egyetemi docens Korreláció-számítás Dr. Varga Beatrix egyetemi docens

Két változó közötti kapcsolat Függetlenség: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az Y szerinti hovatartozásról. Sztochasztikus: Az egyik ismérv hatással van a másikra, de nem határozza meg egyértelműen annak értékeit/változatait. Függvényszerű (determinisztikus): A vizsgált egységek X szerinti hovatartozásának ismeretében egyértelműen megmondható azok Y szerinti hovatartozása is. 2

A kapcsolat mérőszámai Két nominális változó közötti kapcsolatot az asszociációs mérőszámokkal jellemezzük . Ordinális típusú változók összefüggését a rangkorrelációs mutatók mérik. Arány skála típusú változók összefüggését korreláció- és regresszió-analízissel elemezzük. Intervallum/arány és nominális skálán mért változók közötti összefüggést H; 3

Korrelációs kapcsolat elemzése esetén a következő kérdésekre keressük a választ Van- e valamilyen összefüggés az ismérvek között? Milyen irányú az összefüggés Mennyire szoros a kapcsolat? Az egyik ismérv változása milyen hatással van a másik ismérv változására?

A mennyiségi ismérvek közötti kapcsolatot korrelációnak nevezzük. A korrelációszámítás: a mennyiségi ismérvek közötti kapcsolat szorosságának mérése. A regressziószámítás: a mennyiségi ismérvek egymásra gyakorolt hatásának számszerűsítésével, e hatások irányának és mértékének megállapításával foglalkozik. 5

Ha a korrelációs kapcsolat mögött egyirányú okozati összefüggés van akkor: az ok szerepét betöltő ismérv a tényezőváltozó, (magyarázóváltozó), jele: x az okozat szerepét betöltő ismérv az eredményváltozó, jele: y

Azonos tevékenységet végző vállalkozások adatai

9

A korreláció fontosabb típusai 10

Korreláció hiánya A regresszió-függvény bármely X helyen azonos (közel azonos) értéket vesz fel. A függvény képe vízszintes vonal. Y független X-től, X nem befolyásolja Y értékét.

A korreláció hiánya N i n c s k o r e l á ó Y = 7 . 4 E + 8 X R S q % - 2 1 3 N i n c s k o r e l á ó Y = 7 . 4 E + 8 X R S q %

Függvényszerű kapcsolat A korreláció hiányának logikai ellentéte a függvényszerű kapcsolat. Egy adott X értékhez egyetlen Y érték tartozhat. A pontdiagram pontjai a regresszió-vonalhoz illeszkednek, A regresszió-vonal körül nincs szóródás.

Pozitív korreláció P o z i t í v k r e l á c ó R S q = 6 . 5 % Y 8 E + 3 2 1 - P o z i t í v k r e l á c ó R S q = 6 . 5 % Y 8 E + 9 X

Negatív korreláció N e g a t í v k o r l á c i ó Y = 5 . 7 E 6 4 8 X R - 3 2 1 N e g a t í v k o r l á c i ó Y = 5 . 7 E 6 4 8 X R S q 9 %

Nem lineáris korreláció - 3 2 1 4 N e m l i n á r s k o c ó Y = . 9 5 8 + 6 7 X * R S q %

A kapcsolat szorosságának mérőszámai

A kovariancia

Az Y szóródása csak a véletlentől függ A b1 előjelét rendeljük hozzá. A fenti összefüggésből a korrelációs hányadoshoz hasonló mérőszám definiálható, amely azonos a determinációs együtthatóval. Az Y ingadozását teljes mértékben a regresszióval magyarázzuk Az Y szóródása csak a véletlentől függ A b1 előjelét rendeljük hozzá.

Variancia-analízis tábla kétváltozós regresszió-számításnál

A regressziós együttható (β1) tesztelése H0: β1=0 valójában nincs korreláció H1: β1≠0 A H0 ellenőrzésére alkalmas próbafüggvény: Ha |t|<t(1-α/2) H0-t elfogadjuk Ha |t|>t(1-α/2) H0-t elvetjük, van kapcsolat X és Y között

Student’s t-test Df 0,55 0,60 0,70 0,75 0,80 0,90 0,95 0,975 0,99 0,995 1 0,158 0,325 0,727 1,000 1,376 3,08 6,31 12,71 31,82 63,66 2 0,142 0,289 0,617 0,816 1,061 1,89 2,92 4,30 6,96 9,92 3 0,137 0,277 0,584 0,765 0,978 1,64 2,35 3,18 4,54 5,84 4 0,134 0,271 0,569 0,741 0,941 1,53 2,13 2,78 3,75 4,60 5 0,132 0,267 0,559 0,920 1,48 2,02 2,57 3,36 4,03 6 0,131 0,265 0,553 0,718 0,906 1,44 1,94 2,45 3,14 3,71 7 0,130 0,263 0,549 0,711 0,896 1,42 1,90 2,36 3,00 3,50 8 0,262 0,546 0,706 0,889 1,40 1,86 2,31 2,90 9 0,129 0,261 0,543 0,703 0,883 1,38 1,83 2,26 2,82 3,25 10 0,260 0,542 0,700 0,879 1,37 1,81 2,23 2,76 3,17 11 0,540 0,697 0,876 1,36 1,80 2,20 2,72 3,11 12 0,128 0,259 0,539 0,695 0,873 1,78 2,18 2,68 3,06 13 0,538 0,694 0,870 1,35 1,77 2,16 2,65 3,01 14 0,258 0,537 0,692 0,868 1,34 1,76 2,14 2,62 2,98 15 0,536 0,691 0,866 1,75 2,60 2,95 16 0,535 0,690 0,865 2,12 2,58 17 0,257 0,534 0,689 0,863 1,33 1,74 2,11 18 0,127 0,688 0,862 1,73 2,10 2,55 2,88 19 0,533 0,861 2,09 2,54 2,86 20 0,687 0,860 1,32 1,72 2,53 2,84 21 0,532 0,686 0,859 2,08 2,52 2,83 22 0,256 0,858 2,07 2,51 23 0,685 1,71 2,50 2,81 24 0,531 0,857 2,06 2,49 2,80 25 0,684 0,856 2,48 2,79 26 27 0,855 1,31 1,70 2,05 2,47 2,77 28 0,530 0,683 29 0,854 2,04 2,46 30 2,75 40 0,126 0,255 0,529 0,681 0,851 1,30 1,68 2,42 2,70 60 0,254 0,527 0,679 0,848 1,67 2,00 2,39 2,66 120 0,526 0,677 0,845 1,29 1,66 1,98  0,253 0,524 0,674 0,842 1,28 1,645 1,96 2,33

Regressziós becslés pontossága