Kvantitatív Módszerek

Slides:



Advertisements
Hasonló előadás
Nevezetes eloszlások, normál eloszlás
Advertisements

Hipotézis-ellenőrzés (Statisztikai próbák)
I. előadás.
II. előadás.
BECSLÉS A sokasági átlag becslése
Kvantitatív Módszerek
Kvantitatív módszerek
Statisztika feladatok Informatikai Tudományok Doktori Iskola.
Összefüggés vizsgálatok
Becsléselméleti ismétlés
Összefüggés vizsgálatok x átlag y átlag Y’ = a + bx.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
Statisztika II. VI. Dr. Szalka Éva, Ph.D..
Regresszió és korreláció
Statisztika II. IV. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Statisztika II. II. Dr. Szalka Éva, Ph.D..
Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.
Előadó: Prof. Dr. Besenyei Lajos
III. előadás.
PTE PMMK Matematika Tanszék dr. Klincsik Mihály Valószínűségszámítás és statisztika előadások Gépész-Villamosmérnök szak BSc MANB030, MALB030 Bevezető.
Növényökológia gyakorlat Fajok asszociáltságának vizsgálata I.) Az egyes esetek TAPASZTALT gyakorisága 1. táblázat A faj B faj+- +aba+b -cdc+d.
Regresszióanalízis 10. gyakorlat.
Kvantitatív módszerek 7. Becslés Dr. Kövesi János.
Statisztika II. VIII. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. VI.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Kvantitatív módszerek
Kvantitatív módszerek 8. Hipotézisvizsgálatok I. Nemparaméteres próbák Dr. Kövesi János.
Budapesti Műszaki és Gazdaságtudományi Egyetem
A statisztikai próba 1. A munka-hipotézisek (Ha) nem igazolhatók közvetlen úton Ellenhipotézis, null hipotézis felállítása (H0): μ1= μ2, vagy μ1- μ2=0.
Kvantitatív módszerek
Idősor elemzés Idősor : időben ekvidisztáns elemekből álló sorozat
Gazdaságstatisztika 19. előadás Hipotézisvizsgálatok
Gazdaságstatisztika Korreláció- és regresszióelemzés 20. előadás.
Gazdaságstatisztika 16. előadás Hipotézisvizsgálatok Alapfogalamak
Hipotézis vizsgálat (2)
Következtető statisztika 9.
Hipotézis-ellenőrzés (Folytatás)
A sztochasztikus kapcsolatok (Folyt). Korreláció, regresszió
Alapsokaság (populáció)
Várhatóértékre vonatkozó próbák
Hipotézis vizsgálat.
Lineáris regresszió.
t A kétoldalú statisztikai próba alapfogalmai
Két kvantitatív változó kapcsolatának vizsgálata
Hipotézisvizsgálat v az adatforrás működési “mechanizmusát” egy véletlen eloszlás jellemzi v az adatok ismeretében megfogalmazódnak bizonyos hipotézisek.
Paleobiológiai módszerek és modellek 4. hét
I. előadás.
Valószínűségszámítás - Statisztika. P Két kockával dobunk, összeadjuk az értékeket Mindegyik.
Bevezetés a méréskiértékelésbe (BMETE80ME19) Intervallumbecslések 2014/
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Regresszió-számítás március 30. Dr. Varga Beatrix egyetemi.
Bevezetés, tippek Ea-gyak kapcsolata Statisztika II -más tárgyak kapcsolata Hogyan tanulj? Interaktív órák, kérdezz, ha valami nem világos! tananyag =előadások.
Gazdaságstatisztika Gazdaságstatisztika Korreláció- és regressziószámítás II.
A számítógépes elemzés alapjai
Kvantitatív módszerek
Lineáris regressziós modellek
Kiváltott agyi jelek informatikai feldolgozása 2016

II. előadás.
Becsléselmélet - Konzultáció
Gazdaságstatisztika Konzultáció a korreláció- és regressziószámítás, idősorok elemzése témakörökből.
I. Előadás bgk. uni-obuda
III. zárthelyi dolgozat konzultáció
Kockázat és megbízhatóság
Dr. Varga Beatrix egyetemi docens
2. Regresszióanalízis Korreláció analízis: milyen irányú, milyen erős összefüggés van két változó között. Regresszióanalízis: kvantitatív kapcsolat meghatározása.
Dr. Varga Beatrix egyetemi docens
1.3. Hipotézisvizsgálat, statisztikai próbák
3. Varianciaanalízis (ANOVA)
Előadás másolata:

Kvantitatív Módszerek 11. Korreláció- és regressziószámítás II. Dr. Kövesi János

A (lineáris) korrelációs együttható A korrelációs együttható értéke nulla, ha X és Y függetlenek. Ez fordítva általában nem igaz: abból, hogy két valószínűségi változó korrelációs együtthatója nulla, nem feltétlenül következik, hogy a két változó független is egymástól (kivétel, ha X és Y együttes eloszlása normális). Ha a két változónál csak azt tudjuk, hogy R(X,Y)=0, akkor korrelálatlannak nevezzük őket.

A (lineáris) korrelációs együttható Az elméleti korrelációs együtthatót a mintabeli, tapasztalati korrelációs együtthatóból becsülhetjük: ahol: és

A (lineáris) korrelációs együttható szignifikancia vizsgálata Ho: R (X, Y) = 0 A két változó egymástól független normális eloszlású Ha H0 igaz, akkor r(x,y) alábbi függvénye DF=n-2 szabadság fokkal t - eloszlást követ: Ha adott  mellett tsz>tkrit, akkor H0-t elvetjük és =1- megbízhatósággal állíthatjuk, hogy a két változó között sztochasztikus kapcsolat áll fenn.

A (lineáris) korrelációs együttható Feladat: Számítsuk ki a mintapéldában szereplő változó korrelációs együtthatóját és végezzük el a szignifikancia vizsgálatot! Ho: R (X, Y) = 0 DF= n-2 =14-2 = 12  =0,05 tkrit = 2,17 Mivel tsz  tkrit, ezért a nullhipotézist elvetjük és nagy biztonsággal állíthatjuk, hogy a két változó között korrelációs (sztochasztikus) kapcsolat van. (Emlékeztetőül: az előjel – korrelációs együttható értéke 0,71 volt).

Az r(x,y) és a regressziós egyenes összefüggése Az r2 (x, y) – amelyet determinációs együtthatónak is neveznek – azt fejezi ki, hogy a sztochasztikus kapcsolatban a teljes változás hányad része tulajdonítható x-nek. Értékét %-os formában is megadhatjuk.

Feladat A mintapélda adatai alapján határozzuk meg a determinációs index értékét! Az eredményt úgy értelmezhetjük, hogy a termésátlagok változásában a műtrágya felhasználás 72%-ban játszott szerepet.

A regressziós becslés pontossága Nyilvánvaló, hogy a sztochasztikus kapcsolat mérőszámaiból csak akkor vonhatunk le helyes következtetéseket, ha megfelelően nagy mintánk van. Így, az eredmények értékeléséhez hozzátartozik a mérőszámok hibájának vizsgálata is. A pontosság jellemzése céljából tehát most az a, b, paraméterek becslésének szórását (standard hibáját) kell meghatároznunk: 1. A regressziós együtthatók standard hibái (pontbecslés). 2. Konfidencia intervalluma becsült paraméterekre. 3. A lineáris kapcsolat szignifikancia vizsgálata. 4. Az átlagos, vagy az egyedi yi értékek becslése.

1. A regressziós együtthatók standard hibái (pontbecslés). A standard hibák azt mutatják meg, hogy végtelen sok n elemű mintát véve az alapsokaságból az egyes mintákból becsült “a” paraméterek átlagosan sb egységgel szóródnak az alapsokasági regressziófüggvény körül.

2. Konfidencia intervallum a becsült paraméterekre A becsült paraméterekre konfidencia intervallumokat is konstruálhatunk. Nagy minták esetén normális eloszlás táblázatot-, kis minták esetén a Studen-eloszlás t- táblázatát használjuk (DF= n-2):

3. A lineáris kapcsolat szignifikancia vizsgálata t- próba segítségével azt is ellenőrizhetjük, hogy az Y és X változók között szignifikáns lineáris kapcsolat van-e. Nullhipotézisünk és ellenhipotézisünk: A próbastatisztika: A tkrit értéket  szignifikancia szinten DF=n – 2 szabadsági foknál találjuk meg. Ha tsz tkrit, elvetjük Ho-t és valós lineáris összefüggést tételezünk fel X és Y között.

4. Az átlagos, vagy az egyedi yi értékek becslése

Feladat Korábban már többször foglalkoztunk a BUX havi hozamainak statisztikai elemzésével (leíró statisztika, hipotézisvizsgálatok). Az alábbi táblázat alapján vizsgáljuk meg, hogy az 1998. VII.-1999.VI. közötti időszakban a havi hozam (%) alapján kimutatható-e sztochasztikus kapcsolat a BUX és a Zwack hozamai között? Adjunk – előzetes – szakmai magyarázatot az eredményekre!

Feladat A diagram és/vagy a táblázat alapján határozzuk meg az előjel – korrelációs együtthatót! Határozzuk meg a tapasztalati korrelációs együtthatót és  = 5 % mellett végezzük el a szignifikancia vizsgálatot! Következtetés: tsz > tkrit Ho: R(x,y) = 0 DF = 12-2 = 10  = 5% H0 nem igaz ! tkrit = 2,23

Feladat Következtetés: Becsüljük meg a lineáris regressziófüggvény együtthatóit! Határozzuk meg a determinációs együtthatót és értelmezzük az eredményt! Következtetés: A Zwack hozamának változásában a BUX hozama 46,2 %-ban játszott szerepet.

Feladat 23 , 2 = t Következtetés: Határozzuk meg a regressziós becslés pontosságát! se = 7,47 sa = 2,157 sb = 0,143 Készítsünk 95 %-os konfidencia intervallumot a becsült paraméterekre!  = 5% 23 , 2 1 = - a t ao = 1,47  4,841 bo = 0,463  0,32 Ellenőrizzük  = 5 % mellett, hogy a lineáris kapcsolat szginifikáns-e? DF = 10 tsz = 3,24 tkrit = 2,23 Következtetés: Mivel tsz >tkrit a H0 (b=0) nem igaz, tehát x és y között szignifikáns lineáris kapcsolat van.