4. Félvezetőlézerek Lézerközeg: p-szennyezett és n-szennyezett félvezető anyag közötti határréteg Az elektromos vezetés szilárdtestfizikai alapjai szükségesek.

Slides:



Advertisements
Hasonló előadás
A NAP SZÍNKÉPE Megfigyelés különböző hullámhosszakon
Advertisements

Mechanikai munka munka erő elmozdulás (út) a munka mértékegysége m m
Sugárzás kölcsönhatása az anyaggal Készítette: Fehértói Judit (Z0S8CG)
5. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek.
Optikai Átviteltechnikai alapok
Elektromos alapismeretek
Atomrácsos kristályok
Félvezetők Félvezető eszközök.
A hőterjedés alapesetei
Félvezető fotodetektorok és napelemek elmélete és gyakorlati megvalósítása 2 dr. Mizsei János, 2006.
A félvezető dióda (2. rész)
Az elektronika félvezető fizikai alapjai
FÉLVEZETŐ-FIZIKAI ÖSSZEFOGLALÓ
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke 1. zárthelyi megoldásai október 18.
Napenergia-hasznosítás
Si egykristály előállítása
A FÉMEK ÁLTALÁNOS JELLEMZÉSE
Elektrokémia kinetika Írta: Rauscher Ádám Bemutató: Kutsán György
MIKROELEKTRONIKA 2. - Elektromos vezetés, , hordozók koncentrációja, mozgékonyság, forró elektronok, Gunn effektus, eszközök Adalékolás (növesztésnél,
Félvezető technika.
MIKROELEKTRONIKA 3. 1.Felületek, felületi állapotok. 2.Térvezérlés. 3.Kontakt effektusok a félvezetőkben. 4.MES átmenet, eszközök.
Elektromos áram Összefoglalás.
Lézerek Nagy Szilvia.
Készült a HEFOP P /1.0 projekt keretében Az információtechnika fizikája XI. Előadás Félvezetők fizikája Törzsanyag Az Európai Szociális.
Fizika 7. Félvezető eszközök Félvezető eszközök.
4. Félvezetőlézerek Lézerközeg: p-szennyezett és n-szennyezett félvezető anyag közötti határréteg Az elektromos vezetés szilárdtest-fizikai alapjai szükségesek.
Lézerspektroszkópia Előadók: Kubinyi Miklós Grofcsik András
2. Félvezetőlézerek Lézerközeg: p-szennyezett és n-szennyezett félvezető anyag közötti határréteg Az elektromos vezetés szilárdtest-fizikai alapjai szükségesek.
Elektromos alapjelenségek, áramerősség, feszültség
Ma igazán feltöltődhettek!
Elektron transzport - vezetés
3. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy
5. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek.
Kubinyi Miklós ) Lézerspektroszkópia Kubinyi Miklós )
Mit tudunk már az anyagok elektromos tulajdonságairól
Nukleáris képalkotás 2. hét Sugárzásdetektorok Gáztöltésű detektorok
Gáztöltésű detektorok Szcintillátorok Félvezetők
Elektromos áram.
Félvezető áramköri elemek
12. előadás A fémek vezetőképessége A Hall-effektus Kristályok
Kártyás Bálint MFA nyári iskola Puskás Tivadar Távközlési Technikum
Félvezető napelemek elmélete és gyakorlati megvalósítása 1
Félvezető fotodetektorok és napelemek elmélete és gyakorlati megvalósítása 1 dr. Mizsei János,
Félvezetők dr. Mizsei János, 2010 Egyedi atom:
MIKROELEKTRONIKA, VIEEA306
Molekuláris elektronika Hajdu Ferenc Elektronikai Technológia Tanszék 2003.
MIKROELEKTRONIKA, VIEEA306
MIKROELEKTRONIKA, VIEEA306
Bipoláris technológia Mizsei János Hodossy Sándor BME-EET
Félvezető fotodetektorok és napelemek elmélete és gyakorlati megvalósítása (Bevezetés) Habilitációs előadás dr. Mizsei János, 2003.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 Félvezető fizikai alapok.
Exponenciális - Logaritmus függvények, Benford fura törvénye
A félvezetők működése Elmélet
Elektronika 2 / 3. előadás „Bemelegítés”: Visszacsatolt kétpólusú erősítő maximálisan lapos átvitelének feltétele. Feltételek: 2/1›› 1 és H0 ›› 1.
Interaktív ktv hálózatok SZÉCHENYI I. EGYETEM Távközlési Tanszék 1 AKTÍV OPTIKAI ESZKÖZÖK.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 A pn átmenet működése: Sztatikus.
Fotonika Félvezető detektorok
Készült a HEFOP P /1.0 projekt keretében Az információtechnika fizikája XII. Előadás Elektron és lyuk transzport Törzsanyag Az Európai.
Fémkomplexek lumineszcenciája
Optikai Átviteltechnikai alapok
ATOMOPTIKA atomok terelése: litografált rácsokkal, diafragmákkal stb, erős fényerőkkel (rezonanciától elhangolt erős lézerfény) > 0 („kék elhangolás”)
Készült a HEFOP P /1.0 projekt keretében Az információtechnika fiziája X. Előadás Szilárdtestek fizikája Törzsanyag Az Európai Szociális.
TÁMOP /1-2F Analitika gyakorlat 12. évfolyam Fizikai és kémiai tulajdonság mérése műszeres vizsgálatokkal Fogarasi József 2009.
Korszerű anyagok és technológiák
1. Dobozba zárt elektron alap energiája 0,6 eV
Atomrácsos kristályok
Napelemek laboratórium 1. gyakorlat
Fizikai kémia I. a 13. GL osztály részére 2016/2017
A félvezető dióda Segédanyag a Villamosmérnöki Szak Elektronika I. tárgyához Belső használatra! BME Villamosmérnöki és Informatikai Kar Elektronikus Eszközök.
Félvezető áramköri elemek
Előadás másolata:

4. Félvezetőlézerek Lézerközeg: p-szennyezett és n-szennyezett félvezető anyag közötti határréteg Az elektromos vezetés szilárdtestfizikai alapjai szükségesek megértésükhöz

Az elektromos vezetés elmélete 1. Sávelmélet 2. Fermi-Dirac eloszlás 3. Vezetéselmélet

Sávelmélet

Fermi-Dirac eloszlás Az elektronok eloszlását írja le a megengedett sávokban. Az  nergiájú szint betöltöttsége:  F az ún. Fermi-szint

1. Ha T  0, f(  ha  F és f(  ha  F 2. Ha T>0, f(  F ) = 1/2, azaz  F jellemzi, hogy meddig van betöltve a sáv A Fermi-szint jelentései

Vezetéselmélet - A szilárd testekben elektronok vezetnek, amelyek az elektromos tér hatására felgyorsulnak. - A gyorsulás során energiájuk nő. - Az elektromos vezetés feltétele, hogy az elektronok energiájukat kissé növelve megengedett sávban maradjanak.

Szigetelők, vezetők, félvezetők

A tiltott sáv szélessége gyémánt 5,2 eV -> szigetelő germánium 0,6 eV -> saját vezetésű félvezető

Vezetés fémekben A felgyorsuló elektronok növelhetik az energiájukat, mivel vannak betöltetlen szintek közvetlenül a betöltöttek felett. A vezetés 0 K-en is lehetséges.

Donor-szennyezett félvezető A donor elektronjainak energiája közel esik a vezető sáv aljához. Termikus gerjesztés hatására is úgy gyorsulhat, mivel van üres energiaszint (elektronvezetés).

Akceptor félvezető Az akceptor betöltetlen szintje közel esik a vegyértéksáv tetejéhez. Termikusan felkerülhetnek elektronok az akceptor szintre. A vegyértéksávban megüresedett szintek teszik lehetővé az elektronok gyorsulását (lyukvezetés).

Dióda sávszerkezete I.

Dióda sávszerkezete II.

Dióda sávszerkezete III.

Sugárzásos rekombináció

GaAs diódalézer

Gyakorlatban használt félvezetőlézerek p-Ga x Al 1-x As p-GaAs n- Ga x Al 1-x As n-GaAs Nem diódák, hanem több rétegű félvezető rendszerek. Például: aktív réteg

A félvezető-lézerek hullámhossza - Elsődlegesen az anyagtól függ. - Többségük az infravörös tartományban működik. Példák GaAs 900 nm GaxIn 1-x PyAs 1-y nm nm - Hangolás csak szűk tartományon belül durván hőmérsékletváltoztatással (hűteni kell) finomabban áramerősséggel

Félvezető-lézerek jellegzetességei - Kis méret - kis teljesítmény - Jó hatásfok - Széttartó sugár (lencserendszerrel javítják) - Olcsó - Üzemeltetése olcsó (kis elektromos teljesítményt vesz fel, léghűtés elég, nem kell hűtővíz)

Félvezető-lézerek jellegzetességei - Kis méret - kis teljesítmény - Jó hatásfok - Széttartó sugár (lencserendszerrel javítják) - Olcsó - Üzemeltetése olcsó (kis elektromos teljesítményt vesz fel, léghűtés elég, nem kell hűtővíz)