KERESÉS (SEARCH).

Slides:



Advertisements
Hasonló előadás
Készítette: Kosztyán Zsolt Tibor
Advertisements

A Floyd-Warshall algoritmus
Készítette: Kosztyán Zsolt Tibor
Nevezetes algoritmusok

Készítette: Boros Erzsi
MESTERSÉGES INTELLIGENCIA (ARTIFICIAL INTELLIGENCE)
Adatelemzés számítógéppel
Erőállóképesség mérése Találjanak teszteket az irodalomban
Humánkineziológia szak
Mellár János 5. óra Március 12. v
MI 2003/9 - 1 Alakfelismerés alapproblémája: adott objektumok egy halmaza, továbbá osztályok (kategóriák) egy halmaza. Feladatunk: az objektumokat - valamilyen.
MI 2003/ A következőkben más megközelítés: nem közvetlenül az eloszlásokból indulunk ki, hanem a diszkriminancia függvényeket keressük. Legegyszerűbb:
Elektromos mennyiségek mérése
Koordináta transzformációk
Matematika II. 3. előadás Geodézia szakmérnöki szak 2010/2011. tanév Műszaki térinformatika ágazat tavaszi félév.
Matematika II. 2. előadás Geodézia szakmérnöki szak 2012/2013. tanév Műszaki térinformatika ágazat őszi félév.
Illés Tibor – Hálózati folyamok
Utófeszített vasbeton lemez statikai számítása Részletes számítás
Euklidészi gyűrűk Definíció.
Hatékony gyorsítótár használata legrövidebb utak kereséséhez Bodnár István, Fodor Krisztián, Gyimesi Gábor Jeppe Rishede Thomsen, Man Lung Yiu, Christian.
A tételek eljuttatása az iskolákba
Optimális részhalmaz keresése Keresési tér. 0,0,0,0 1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,10,0,1,1 1,1,0,0 1,0,1,0 0,1,1,0 1,1,1,0 1,0,1,1 0,1,1,1 1,1,1,11,1,0,1.
MI 2003/ Alakfelismerés - még egy megközelítés: még kevesebbet tudunk. Csak a mintánk adott, de címkék nélkül. Csoportosítás (klaszterezés, clustering).
1. IS2PRI2 02/96 B.Könyv SIKER A KÖNYVELÉSHEZ. 2. IS2PRI2 02/96 Mi a B.Könyv KönyvelésMérlegEredményAdóAnalitikaForintDevizaKönyvelésMérlegEredményAdóAnalitikaForintDeviza.
OPERÁCIÓKUTATÁS Kalmár János, 2012 Tartalom A nulla-egy LP megoldása Hátizsák feladat.
Miskolci Egyetem Informatikai Intézet Általános Informatikai Tanszé k Pance Miklós Adatstruktúrák, algoritmusok előadásvázlat Miskolc, 2004 Technikai közreműködő:
Miskolci Egyetem Informatikai Intézet Általános Informatikai Tanszé k Pance Miklós Adatstruktúrák, algoritmusok előadásvázlat Miskolc, 2004 Technikai közreműködő:
IRE 4 /32/ 1 Óbudai Egyetem, NIK Dr. Kutor László2011. TÁMOP – I ntelligens R endszerek E lmélete 4.
Kétszemélyes játékok Előadó: Nagy Sára.
Dijkstra algoritmusa Egy csúcsból a többibe vezető legkisebb költségű út megkeresése Az algoritmus működésének leírása és bemutatása LL.
Szerkezeti elemek teherbírásvizsgálata összetett terhelés esetén:
Evolúciósan stabil stratégiák előadás
Játékelméleti alapfogalmak előadás
Miskolci Egyetem Informatikai Intézet Általános Informatikai Tanszé k Pance Miklós Adatstruktúrák, algoritmusok előadásvázlat Miskolc, 2004 Technikai közreműködő:
DRAGON BALL GT dbzgtlink féle változat! Illesztett, ráégetett, sárga felirattal! Japan és Angol Navigáláshoz használd a bal oldali léptető elemeket ! Verzio.
KERESÉS (SEARCH).
Készítette: Kosztyán Zsolt Tibor
Gráfok Készítette: Dr. Ábrahám István.
szakmérnök hallgatók számára
Gráf szélességi bejárása
Logikai szita Izsó Tímea 9.B.
2007. május 22. Debrecen Digitalizálás és elektronikus hozzáférés 1 DEA: a Debreceni Egyetem elektronikus Archívuma Karácsony Gyöngyi DE Egyetemi és Nemzeti.
Lineáris programozás.
Optimalizáció modell kalibrációja Adott az M modell, és p a paraméter vektora. Hogyan állítsuk be p -t hogy a modell kimenete az x bemenő adatokon a legjobban.
7. Házi feladat megoldása
Alapsokaság (populáció)
A klinikai transzfúziós tevékenység Ápolás szakmai ellenőrzése
A Dijkstra algoritmus.
Valós idejű adaptív útvonalkeresés
Nyitott Kapuk 2010 Beiskolázási kérdőívek értékelése.
QualcoDuna interkalibráció Talaj- és levegövizsgálati körmérések évi értékelése (2007.) Dr. Biliczkiné Gaál Piroska VITUKI Kht. Minőségbiztosítási és Ellenőrzési.
Előadó: Nagy Sára Mesterséges intelligencia Kereső rendszerek.
1 Szélességi Bejárás Györgyi Tamás – GYTNAAI.ELTE 2007 Március 22 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S b a d e f h g c.
1. Melyik jármű haladhat tovább elsőként az ábrán látható forgalmi helyzetben? a) A "V" jelű villamos. b) Az "M" jelű munkagép. c) Az "R" jelű rendőrségi.
Algoritmizálás, adatmodellezés tanítása 8. előadás.
BINÁRIS FA Definició: A fa olyanösszefüggő gráf, amelyben nincs kör
Példa kettő-három fa felépítésére - törlés művelet Készítette : Krizsai Petra
Mikroökonómia gyakorlat
Mesterséges Intelligencia 1. A nem informált keresés szisztematikusan új állapotokat generálnak, és összehasonlítják azokat a célállapottal. Ezek a stratégiák.
Business Mathematics A legrövidebb út.
Útkeresések.
előadások, konzultációk
1 Az igazság ideát van? Montskó Éva, mtv. 2 Célcsoport Az alábbi célcsoportokra vonatkozóan mutatjuk be az adatokat: 4-12 évesek,1.
Diszjunkt halmazok adatszerkezete A diszjunkt halmaz adatszerkezet diszjunkt dinamikus halmazok S={S 1,…,S n } halmaza. Egy halmazt egy képviselője azonosít.
Algoritmusok és adatszerkezetek
Mesterséges intelligencia 8. Stratégiai játékok A játék kimenetelére a játékosoknak ellenőrizhető módon van befolyásuk. Pl.: sakk, dáma, póker stb. A.
Mesterséges intelligencia
Nem módosítható keresések
2-3-fák A 2-3-fa egy gyökeres fa az alábbi tulajdonságokkal:
Előadás másolata:

KERESÉS (SEARCH)

Keresés – módszeres próbálkozás Problémák: Mit kell tudni egy feladat megoldásához? – akciók, állapotok, célok Hogyan kell az ismereteket leírni? – MI-ben: reprezentáció Hogyan kell a megoldást keresni? – MI-ben: keresés Reprezentáció: állapottér (state space), kezdeti- és célállapotok reprezentálása: gráf (graph) csomópont (node) - állapot (state) él (arc) - művelet (action) probléma redukció – részfeladatokra bontás reprezentálása: gráf csomópont – problémaleírás él - művelet (probléma részproblémává redukálása)

KERESÉS Reprezentációs gráf keresés közben építjük fel (implicit leírás) irányított ciklusmentes gráf (egyszerűsítés: fává alakítjuk)

KERESÉS Keresési probléma: A keresés folyamata: A keresés technikája: kezdeti állapot, operátorok, célteszt/ célállapot, költségek A keresés folyamata: állapottér, út, megoldás kiterjesztés, stratégia A keresés technikája: keresési fa, csomópont, gyökér, levél keresési algoritmus: melyik csomópontot érdemes kiterjeszteni? Keresés hatékonyságának mérése: talál-e megoldást? talált megoldás jó megoldás-e? (alacsony költségű – útköltség) keresési eljárás költsége (idő- és memóriaigény) keresés költsége: út költsége + keresési eljárás költsége

MISSZIONÁRIUSOK ÉS KANNIBÁLOK PROBLÉMÁJA kezdeti állapot … célállapot … útköltség ... Modell: híd, lyukas csónak, evező …  frame probléma Reprezentáció: node ?? - nevek ?? – bal part:(3M, 3K, Cs) akció ?? - ki merre megy a csónakban – (1M), (1K), (1M 1K), (2M), (2K) Keresés: megszorítások az operátorok alkalmazására: – csak legális állapotba – csak új állapotba

HANOI TORNYAI reprezentáció … állapottér modell állapot - melyik korong melyik rúdon, pl. (1, 1, 1, 1) művelet - korong áthelyezése i. rúdról j. rúdra (1  i, j  3)

HANOI TORNYAI Hipotetikus megoldás Probléma redukció

4 x 4-es PUZZLE reprezentáció állapotok – lapok helyzete – 4 x 4 -es mátrix állapottér – elérhetőség ! akció - ? adott lap mozgatása fel, le, jobbra, balra lyuk mozgatása (4 lehetséges akció) költség – az akciók száma (az út hossza) megoldás – minimális költségű út a kezdeti és a célállapot között céltól való távolság hány lépés van a célig (S) – nem tudjuk  becslés rossz helyen levő lapok száma (H1) Manhattan távolság (H2) H1, H2: alsó becslések H2  H1 H2 jobban informált becslés

N KIRÁLYNŐ PROBLÉMA reprezentáció állapot – egy állás (N x N-es mátrix) állapottér – lehetséges állások 1..N királynővel – mezők megcímkézése (KN, ütésben, szabad)  nem lehetnek ütésben álló KN-k  KN=N esetén célállapot művelet – 1 KN elhelyezése  ütésben álló mezők száma nő korlátozás kielégítés (constraint satisfaction) költség – minden megoldás költsége azonos (N hosszú műveletsorozat) kezdőállapot – üres tábla célállapot – N királynő a táblán

N KIRÁLYNŐ PROBLÉMA reprezentációs gráf – inkrementális megfogalmazás

LEFEDÉSI PROBLÉMA "bamba módszer" : próbálgatás lehetséges állapotok száma igen nagy  elágazási tényező nagy MI-t csak akkor szabad használni, ha a természetes kifogy!

CSELEKVÉSTERVEZÉS lehet-e ezt keresési feladatként felfogni? akciósorozat (akciósorrend??) kezdőállapot  célállapot (forward reasoning) - itt reménytelen célhoz hiányzó feltételek célállapot  kezdőállapot (backward reasoning)

CSELEKVÉSTERVEZÉS

ÁLTALÁNOS KERESÉSI ALGORITMUS adott: kezdeti állapot célteszt/ célállapot műveletek keresési algoritmus: Legyen L a kezdeti állapoto(ka)t tartalmazó lista. Ha L üres, akkor leállás - a keresés sikertelen; egyébként legyen n egy csomópont L-ből. Ha n célállapot, akkor leállás - eredmény megadása; egyébként n törlése L-ből, n gyermekeinek előállítása, n gyermekeinek hozzáadása L-hez, visszalépés 2-re.

ÁLTALÁNOS KERESÉSI ALGORITMUS keresőgráf (search graph) nyílt csúcsok (open nodes) kiterjesztés (extension) sikertelen keresés több célállapot melyik nyílt csúcsot válasszuk ???

PÉLDA: ÁLTALÁNOS KERESŐ JÁTÉK adott: két kétjegyű szám (kiindulási- és célszám) feladat: eljutni a kiindulási számtól a célszámig akció: egy számjegy növelése vagy csökkentése, kétszer nem lehet ugyanazt a számjegyet változtatni, 0-t csökkenteni, 9-t növelni nem lehet Pl. kiindulási szám 25, célszám 44 L={25} n=25 L={15 (25), 35 (25), 24 (25), 26 (25)} n=15 L={35 (25), 24 (25), 26 (25), 14 (15|25), 16 (15|25)} … melyik számot választjuk a listáról? hova, milyen sorrendben tesszük a gyerekeket? célfüggvény

VAK KERESÉSEK (BLIND SEARCH)

SZÉLESSÉGI KERESÉS (BREADTH-FIRST SEARCH) A keresési fában mindig a legmagasabb szinten lévő csomópontok valamelyikét terjeszti ki open lista (L): A B C C D E D E F G E F G H I J F G H I J G H I J H I J K L I J K L M J K L M N O K L M N O A C B D E F G H I J K L M N O

SZÉLESSÉGI KERESÉS (BREADTH-FIRST SEARCH) Az általános keresési algoritmus módosítása: n az első csomópont L-ből n gyermekeinek hozzáadása L végéhez Az algoritmus tulajdonságai: memóriaigény: bd időigény: 1 + b + b2 + ... + bd  bd teljes optimális

MÉLYSÉGI KERESÉS (DEPTH-FIRST SEARCH) A keresési fában mindig a legmélyebben lévő csomópontok valamelyikét terjeszti ki A open lista (L): A B C D E C H I J E C M I J E C I J E C N O J E C C B D E F G H I K L J M N O

MÉLYSÉGI KERESÉS (DEPTH-FIRST SEARCH) Az általános keresési algoritmus módosítása: n az első csomópont L-ből n gyermekeinek hozzáadása L elejéhez Az algoritmus tulajdonságai: memóriaigény - megoldás méretével arányos - b*d időigény: bd nem teljes (végtelen ág lehet) nem optimális

KORLÁTOZOTT MÉLYSÉGŰ KERESÉS (DEPTH-LIMITED SEARCH) Mélységi keresés mélységi korláttal. A keresési fában mindig a legmélyebben lévő csomópontok valamelyikét terjeszti ki, feltéve, hogy az nincs egy előre adott mélységi korlát (l) alatt. Az algoritmus tulajdonságai: memóriaigény: b*l időigény: bl teljes (ha l nagyobb, mint a megoldás mélysége, d) nem optimális Hogyan válasszuk meg előre a mélységi korlátot?

ITERATÍV MÉLYÍTÉS (ITERATIVE DEEPENING) Megkerüli a mélységi korlát meghatározását. Korlátozott mélységű keresés egyre növekvő l = 0, 1, 2, ... mélységi korlát mellett. Mintha a csomópontoknak a mélységi korlát alatt nem lehetnének leszármazottai. Ha a célt nem sikerült így elérni, eggyel növeli a korlátot és újraindítja az egész keresést. Az algoritmus tulajdonságai: memóriaigény: megoldás méretével arányos – b*d időigény: bár redundáns (a fa „teteje” ismétlődik) – bd teljes optimális

ITERATÍV MÉLYÍTÉS (ITERATIVE DEEPENING) open lista (L): l=3 A B C D E C H I J E C I J E C J E C E C C F G G K L open lista (L): l=0 A l=1 A B C C l=2 A D E C E C F G G A C B E F G D H I K L J M N O

ITERATÍV MÉLYÍTÉS (ITERATIVE DEEPENING) redundáns - Nagy teher ez? Lásd az alábbi példát: Legyen b = 10, d = 5. Ekkor a csomópontok száma: 1 + 10 + 100 + 1 000 + 10 000 + 100 000 = 111 111 A legalsó szinten a csomópontokat egyszer kell kiterjeszteni, eggyel magasabb szinten kétszer, stb. Azaz a kiterjesztések teljes száma: 6*1 + 5*10 + 4*100 + 3*1 000 + 2*10 000 + 100 000 = 123 456 Ebben a példában ez a szükségesnél 11% -kal több kiterjesztést jelent. Előnyei: mélységi keresés csekély memóriaigénye szélességi keresés teljessége biztosítja, hogy a keresési fa nem lesz mélyebben feltárva, mint amilyen mélyen maga a cél található

EGYENLETES KERESÉS (UNIFORM-COST SEARCH) A keresési fában mindig a pillanatnyilag legkisebb költségű csomópontok valamelyikét terjeszti ki open lista (L): A(0) B(3) C(4) C(4) D(5) E(7) D(5) E(7) F(7) G(7) I(6) E(7) F(7) G(7) J(7) H(8) E(7) F(7) G(7) J(7) H(8) N(8) O(8) F(7) G(7) J(7) H(8) N(8) O(8) G(7) J(7) H(8) N(8) O(8) J(7) H(8) N(8) O(8) K(9) L(10) H(8) N(8) O(8) K(9) L(10) N(8) O(8) K(9) L(10) M(11) A 3 4 C B 3 3 2 4 D E F G 3 2 2 3 1 H I J K L 2 2 M N O

EGYENLETES KERESÉS (UNIFORM-COST SEARCH) Az általános keresési algoritmus módosítása: n az első csomópont L-ből n gyermekeinek hozzáadása L-hez, majd L rendezése a csomópontok növekvő költsége szerint. Az algoritmus tulajdonságai: memóriaigény: bd időigény: bd teljes optimális speciális változata: szélességi keresés (élek egységnyi költségűek)

VAK KERESÉSI STRATÉGIÁK ÖSSZEHASONLÍTÁSA teljesség időigény memóriaigény optimalitás szélességi igen bd egyenletes mélységi nem b*d korlátozott mélységű ha d ≤ l bl b*l iteratív mélyítés b: elágazási tényező d: megoldás mélysége l: mélységi korlát

HEURISZTIKUS KERESÉSEK (HEURISTIC SEARCH)

HEURISZTIKUS KERESÉSEK vak keresési algoritmusok hatékonyságának javítása feladatmegoldások számításigényének csökkentése keresés korlátozott erőforrások mellett feladathoz kapcsolódó információk figyelembe vétele Heurisztika általános jelentés: bármely tanács, mely gyakran hatékony, ám nem biztos hogy minden esetben érvényes technikai jelentés: heurisztikus kiértékelő függvény, amely a probléma egy állapotához egy számot rendel (pl. sakk: egy pozíció ereje)

HEURISZTIKUS KERESÉSEK Heurisztika a keresésben: A még ki nem terjesztett csomópontok (L) kiértékelése: mennyire van közel a célhoz? Algoritmus típusok legjobbat-először keresés: a legjobbnak tűnő csomó- pont kiterjesztése (előretekintő keresés, A*, IDA*) iteratív javítás: elmozdulás a legjobbnak tűnő irányba (hegymászó keresés, szimulált hűtés, genetikus algoritmus) A legjobb csomópont megtalálása elvben nem könnyebb, mint maga a keresési feladat!

HEURISZTIKUS KERESÉSEK Heurisztikus kiértékelő függvény Célja: a feladat megoldásával járó számításigény csökkentése adott erőforrás használat mellett a lehető legjobb megoldás megtalálása Kompromisszum a számításigény és a megoldás minősége között Már kevés alkalmazás-függő szakismeret is nagyban segíthet akár 1), akár 2) célok érdekében. Gyakori heurisztikus kiértékelő függvény: Annak a költségnek a becslése, mely egy célállapotnak a pillanatnyi állapotból való elérésével jár. (pl. 4x4-es játék, útkeresés városok között, 8-királynő)

HEGYMÁSZÓ KERESÉS (HILL-CLIMBING SEARCH) A keresés során egy csomópont közvetlen leszármazottjait vizsgálja csak, és ezek közül mindig a legjobbat választja Algoritmus Legyen n a kezdeti állapot. Ha n egy célállapot, akkor állj le és add vissza eredményként. Egyébként állítsd elő n valamennyi n’ leszármazottját; legyen n = a legjobb n’; menj vissza 2-re. Tulajdonságok Nem tárolja a keresési gráfot, csak a pillanatnyilag vizsgált csomópontot - így minimális memória igény Sikere nagyban függ a felület alakjától

HEGYMÁSZÓ KERESÉS (HILL-CLIMBING SEARCH) Problémák lokális maximum azonos értékű felület nyereg probléma (gerinctúra lenne jó, de arra nem vezet út) Módosítások: több pontból újraindítás (véletlen újraindítású hegymászó keresés) „lefelé vezető” lépések megengedése (szimulált hűtés) Előnyei: memóriaigény kicsi jó helyzetből indulva gyorsan célhoz ér

ELŐRETEKINTŐ KERESÉS (BEST-FIRST SEARCH) Elv: megtalálni egy célt, amilyen gyorsan csak lehetséges Kiértékelés alapja: egyedül a céltól való távolság Mindig a célhoz legközelebb levő csomópontot terjeszti ki – becslés Algoritmus Legyen L a kezdeti állapotokat tartalmazó lista. Ha L üres, akkor állj le – a keresés sikertelen; egyébként legyen n az a csomópont L-ből, amelyik várhatóan a legközelebb van a célhoz. Ha n egy célállapot, akkor állj le és add vissza (a hozzá vezető úttal együtt) eredményként; egyébként töröld n-t L-ből; állítsd elő n gyermekeit; jegyezd fel a hozzájuk vezető utat; add a gyermekeket L-hez; menj vissza 2-re.

ELŐRETEKINTŐ KERESÉS (BEST-FIRST SEARCH) Csomópont költsége: f(n) = h(n) – becsült távolság a céltól kiterjesztés sorrendje 8 1. élek költsége a példában egységnyi 6 2. 7 4 3. 4 nem optimális 2 4. 0 5.

A ALGORITMUS egyenletes keresés és előretekintő keresés előnyös tulajdonságait egyesíti keresés biztonságának megtartása kiterjesztések számának csökkentése - előretekintő heurisztikával Kiértékelés alapja: a már megtett út, és a még várható út költsége kiértékelő függvény: f(n) = g(n) + h(n) h(n)  0 ahol: g(n): n tényleges távolsága a kezdeti állapottól h(n): n becsült távolsága a céltól f(n) minimális  kifejtésre kerülő csúcs

A ALGORITMUS 3 3 2 3 4 5 1 3 2 4 nem feltétlenül optimális 1 4 0 3 1 5 h(n) f(n) élek költsége a példában egységnyi 3 3 2 3 4 5 1 3 2 4 nem feltétlenül optimális 1 4 0 3 1 5 1 6

A* ALGORITMUS olyan A algoritmus, melynek heurisztikus függvénye minden csúcsban alsó becslés n: h(n)  h*(n) h(n) megengedhető (admissible) Az A* algoritmus mindig optimális megoldást talál (ha létezik megoldás). A kiterjesztésre választott bármely n csúcsra f(n)  f*. (f* - optimális mo. költsége) ha az algoritmus n csúcsot választja m helyett: f(n)  f(m) = g(m) + h(m)  g(m) + h*(m) = f*(m) = f* A talált megoldás optimális (indirekt bizonyítás) Tfh eljutunk t végpontba, amely nem optimális  f(t)  f* 1. szerint f(t)  f*  ellentmondás

A* ALGORITMUS L = {A(3)} L = {B(3) D(3) C(4)} L = {E(3) D(3) C(4)} 1 1 2 B 2 (3) C 2 (4) D 2 (3) 1 1 4 1 1 E 1 (3) F 1 (4) G  H 2 (7) I 1 (3) 1 1 3 1 4 3 J  O  K 0 (6) L 0 (6) M 1 (7) N 0 (5) 1 3 L = {A(3)} L = {B(3) D(3) C(4)} L = {E(3) D(3) C(4)} L = {D(3) C(4) K(6) J()} L = {I(3) C(4) K(6) H(7) J()} L = {C(4) N(5) K(6) H(7) J() O()} L = {F(4) N(5) K(6) H(7) J() O() G()} L = {N(5) K(6) L(6) H(7) J() O() G()} P 0 (7) Q 0 (9)

A* ALGORITMUS h  h*  csak az útba eső node-okat fejti ki h  0  egyenletes keresés h  0 és élek költsége egységnyi  szélességi keresés h1, h2 megengedhető becslések h2  h1 (minden pontban)  exp(h1)  exp(h2) h1 jobban informált becslés ideális kiértékelő függvény: célállapotban visszaadja a megoldás költségét h(n) = 0 és f(n) = g(n) a célban nem változik, ha bármely állapotból optimális lépést teszünk (tökéletes becslő) ha h(n) tökéletesen becsli a céltól való távolságot, nincs letérés az optimális útról becslés költsége . . .

IDA* ALGORITMUS (ITERATIVE DEEPENING A*) Alapötlet: az iteratív mélyítés csökkentette a vak keresés memóriaigényét – alkalmazzuk most heurisztikus keresésre Iteratív mélyítés, mélységi korlát helyett "jósági" korlát f(n)-re ciklusonként mélységben-először keresés mozgó korlát Mintha a csomópontoknak a "jósági" korlát alatt nem lehetnének leszármazottjai. – Ha a célt nem sikerült így elérni, növeli a korlátot és újraindítja az egész keresést. Jósági korlát meghatározása: Hatékonyabb, ha az aktuális korlátot nem léptetve növeli, hanem az előző iterációs ciklusban választja ki.

IDA* ALGORITMUS (ITERATIVE DEEPENING A*) Tulajdonságok teljes és optimális (úgy, mint A*) memóriaigény – lineárisan nő a cél mélységével időigény – bár redundáns, marad exponenciális (erősen függ h-tól) NIDA*  NA* N: kiterjesztett node-ok száma

SZIMULÁLT HŰTÉS (SIMULATED ANNEALING) Alapötlet: fémöntési technikával való analógia Algoritmus nem a legjobb lépést választja, hanem véletlenül választ ha a lépés javít a pillanatnyi helyzeten, elfogadja és megteszi bizonyos valószínűséggel elfogad olyan lépést is, amely ront a pillanatnyi helyzeten hőmérséklet: befolyásolja a rontó lépések elfogadásának valószínűségét kisebb hőmérsékleten kisebb az esély a keresés előrehaladtával a hőmérséklet csökken (végül hegymászó keresés) z: jelenlegi - következő érték

GENETIKUS ALGORITMUS (GENETIC ALGORITHM) Alapötlet: Keresés a természetes kiválasztódás (durva) utánzásával. Fogalmak egyed (egy lehetséges megoldás – állapot) populáció (a lehetséges megoldások egy halmaza) rátermettség – fitness (célfüggvény) genetikus kód (az egyed reprezentációja) genetikus műveletek: kereszteződés, mutáció

GENETIKUS ALGORITMUS (GENETIC ALGORITHM) Töltsd fel a kezdeti populációt. Ha a leállási feltétel teljesül, akkor állj le és add vissza a legjobb egyedeket eredményként. Egyébként válassz ki néhány egyedet a populációból; alkalmazd rájuk a genetikus műveleteket; értékeld ki az új egyedeket; dobd el a legrosszabb egyedeket; menj vissza 2-re.

ÖSSZEGZÉS – KERESÉSEK Feladatmegfogalmazás: akciók, állapotok, célok Vak vagy informált keresés az információ segíthet, de néha nehéz megszerezni Tulajdonságok: teljesség, optimalitás, idő- és memóriaigény Mikor mit érdemes használni? szélességi keresés: csak ha kicsi az elágazási tényező (ritka eset) mélységi keresés: csak ha a reménytelen ágak nem lehetnek túl hosszúak legjobb általános vak keresés: iteratív mélyítés előretekintő keresés, A* keresés: fontos a cél távolságának becslése iteratív javító algoritmusok: jó távolságbecslés nem szabad lokális optimumokban leragadni

ÖSSZEGZÉS – KERESÉSEK Meta-szintű döntések: reprezentáció és módszer választás Nyitott kérdések minden operátor (akció) egyformán fontos nem lehet darabokból összerakni egy utat többet kell tudni (és reprezentálni) az akciókról; előfeltételeikről, hatásaikról, és kölcsönhatásaikról

KÉTSZEMÉLYES JÁTÉKOK (ADVERSARY SEARCH)

JÁTÉKFÁK KERESÉSE Feltételezések: két játékos felváltva lép megadott szabályok szerint a játékosok teljes információjúak nincs szerepe a véletlennek, a szerencsének minden állásban véges számú lépés közül lehet választani a játék véges számú lépésben befejeződik játszma végén egyik játékos nyer, másik veszít (lehet döntetlen is) sakk, malom, snóbli, bridzs, amőba, Othello, triel ??? cél: nyerés lehetőségének és módjának meghatározása (egyik játékos szempontjából)

JÁTÉKFÁK KERESÉSE játékfa: csúcsok: állások (állapotok) élek: lépések (akciók) szintek (MIN, MAX) játékfa tartalmazza az összes lehetséges játszmát (exponenciális) – teljes játékfa felépítése?? játszma: kezdőcsúcstól egy végcsúcsba vezető út a fán levelek értéke ismert  közbenső csúcsok értékének meghatározása

JÁTÉKFÁK KIÉRTÉKELÉSE MÉLYSÉGI KERESÉSSEL a két játékos szempontjából különböző kiértékelés! induláskor: max node értéke , min node értéke 

MINIMAX ELJÁRÁS módszer a soron következő játékos legjobb első lépésének kiválasztására (legnagyobb biztos előnyszerzés elve) játékfa adott mélységű generálása terminális csúcsok értékeinek meghatározása a maximális, ill. minimális értékek fölfelé terjesztése 8 8 -1 9 8 -1 0 9 6 7 4 8 -3 -1 -4 -2

(M, N) ÁTLAGOLÓ KIÉRTÉKELÉS kiértékelő függvény megbízhatósága tévedések mértékének csökkentése - átlagoló kiértékelés max szinten - m legnagyobb átlaga min szinten - n legkisebb átlaga

STATIKUS KIÉRTÉKELŐ FÜGGVÉNY probléma: a teljes fát felépíteni általában nem tudjuk megoldás: bizonyos mértékig felépített fa leveleire becslés statikus kiértékelő függvény (az adott állástól függ) sakk… finomítások… Othello…

JÁTÉKFA KIÉRTÉKELÉSE konstans mélység szelektív keresés kiértékelés kis mélységben következő mélységű bővítés csak a jobb node-okra (pl. sakkozó gondolkodása – feltehetően jó részeket mélyebben vizsgálja) – iteratív mélyítési technika nyugalmi helyzet taktikai részek - gyorsan változó értékek

JÁTÉKFA KIÉRTÉKELÉSE szinguláris kiterjesztés horizont effektus

ALFA-BÉTA ELJÁRÁS minimax eljárás javított változata - kevesebb csúcs kiértékelése terminális csúcs azonnali kiértékelése vj csak csökkenhet b – felső korlát – eddigi legjobb lépés értéke vj csak növekedhet a – alsó korlát – eddigi legjobb lépés értéke

ALFA-BÉTA ELJÁRÁS

ALFA-BÉTA ELJÁRÁS Alfa-béta eljárás hatékonyságának növelése: fa csúcsainak rendezése cáfoló lépés alkalmazása (az ellenfél erős válaszlépését a következő lépésnél először próbáljuk ki)

ALFA-BÉTA ELJÁRÁS

ALFA-BÉTA ELJÁRÁS Minimax eljárással Alfa-béta eljárással a = 4 b = 4 2 < 4 a vágás a = 4 a = 1 a = 5 a = 2 4 < 5 b vágás 1 4 5 2 1