Statisztika II. III. Dr. Szalka Éva, Ph.D..

Slides:



Advertisements
Hasonló előadás
Hipotézis-ellenőrzés (Statisztikai próbák)
Advertisements

I. előadás.
II. előadás.
Statisztika II. I. Dr. Szalka Éva, Ph.D..
BECSLÉS A sokasági átlag becslése
Statisztika I. VI. Dr. Szalka Éva, Ph.D..
Gazdaságelemzési és Statisztikai Tanszék
Általános statisztika II.
Mérési pontosság (hőmérő)
Becsléselméleti ismétlés
Összefüggés vizsgálatok x átlag y átlag Y’ = a + bx.
Környezeti statisztika Dr. Huzsvai László egyetemi docens Debrecen2008.
Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék STATISZTIKA I. 11. Előadás.
Gazdaságelemzési és Statisztikai Tanszék
STATISZTIKA II. 5. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.
Statisztika II. IX. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
Közlekedésstatisztika
Statisztika II. VI. Dr. Szalka Éva, Ph.D..
E L E M Z É S. 1., adatgyűjtés 2., mintavétel (a teljes sokaságot ritkán tudjuk vizsgálni) 3., mintavételi információk alapján megállapítások, következtetések.
Statisztika II. IV. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Statisztika II. II. Dr. Szalka Éva, Ph.D..
Statisztika II. V. Dr. Szalka Éva, Ph.D..
Előadó: Prof. Dr. Besenyei Lajos
Mintavételes eljárások
Kvantitatív módszerek 7. Becslés Dr. Kövesi János.
Gazdasági informatika
Hipotézisvizsgálat (1. rész) Kontingencia táblák
KÉT FÜGGETLEN, ILL. KÉT ÖSSZETARTOZÓ CSOPORT ÖSZEHASONLÍTÁSA
Statisztika II. VIII. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. VI.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Készítette: Kosztyán Zsolt Tibor
A statisztikai próba 1. A munka-hipotézisek (Ha) nem igazolhatók közvetlen úton Ellenhipotézis, null hipotézis felállítása (H0): μ1= μ2, vagy μ1- μ2=0.
Az F-próba szignifikáns
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
STATISZTIKA II. 2. Előadás
STATISZTIKA II. 3. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.
STATISZTIKA II. 4. Előadás
Kvantitatív Módszerek
Idősor elemzés Idősor : időben ekvidisztáns elemekből álló sorozat
Idősorok elemzése Determinisztikus és sztochasztikus komponensek, előrejelzés autoregresszív modellel Forrás: Hidrológia II HEFOP oktatási segédanyag (
Valószínűségszámítás
Gazdaságstatisztika 14. előadás.
RÉSZEKRE BONTOTT SOKASÁG VIZSGÁLATA
Hipotézis vizsgálat (2)
Következtető statisztika 9.
Hipotézis-ellenőrzés (Folytatás)
Alapsokaság (populáció)
Adatleírás.
I. előadás.
Valószínűségszámítás - Statisztika. P Két kockával dobunk, összeadjuk az értékeket Mindegyik.
A kombinációs táblák (sztochasztikus kapcsolatok) elemzése
A szóráselemzés gondolatmenete
Bevezetés a méréskiértékelésbe (BMETE80ME19) Intervallumbecslések 2014/
Bevezetés a méréskiértékelésbe (BMETE80ME19) 2014/
Valószínűségszámítás II.
Bevezetés a méréskiértékelésbe (BMETE80ME19) 2014/
Bevezetés, tippek Ea-gyak kapcsolata Statisztika II -más tárgyak kapcsolata Hogyan tanulj? Interaktív órák, kérdezz, ha valami nem világos! tananyag =előadások.
Kvantitatív módszerek Becsléselmélet október 15.
100-as szög méreteinek gyakorisága (n = 100) db mm Gyakoriság grafikon (adott méretű esetek db.)
Konzultáció – Részekre bontott sokaság vizsgálata, Becslés November 5. Gazdaságstatisztika.
Gazdaságstatisztika Becsléselmélet október 30. és november 5.
Kvantitatív módszerek
II. előadás.
Becsléselmélet - Konzultáció
Kvantitatív módszerek
I. Előadás bgk. uni-obuda
Gazdaságinformatikus MSc
2. Regresszióanalízis Korreláció analízis: milyen irányú, milyen erős összefüggés van két változó között. Regresszióanalízis: kvantitatív kapcsolat meghatározása.
Előadás másolata:

Statisztika II. III. Dr. Szalka Éva, Ph.D.

Becslés rétegezett mintavételkor Dr. Szalka Éva, Ph.D.

Becslés rétegezett mintavételkor A rétegezett mintavétel lényege az, hogy ha a sokaság heterogén, és van ismeretünk arra vonatkozóan, hogy hogyan lehet többé-kevésbé homogén részekre bontani, akkor ezeket a homogén részsokaságokat tekintjük rétegeknek, a mintavételt és a becslést rétegenként hajtjuk végre. Dr. Szalka Éva, Ph.D.

Nem arányos eloszlás Az átlagot az alap részsokaság elemszámával súlyozva számítjuk ki: Dr. Szalka Éva, Ph.D.

Nem arányos eloszlás A konfidencia intervallum meghatározásához szükségünk van a becslőfüggvény standard hibájára: Dr. Szalka Éva, Ph.D.

Nem arányos eloszlás A konfidencia intervallum: a hibahatár megállapítása a már ismert z-próbafüggvény segítségével történik Dr. Szalka Éva, Ph.D.

Nem arányos eloszlás Ha a sokaság rétegszórását nem ismerjük, akkor a mintákból kell kiszámítani : Dr. Szalka Éva, Ph.D.

Arányos eloszlás esetén Az egyes rétegek aránya megegyezik, azaz: Dr. Szalka Éva, Ph.D.

Arányos eloszlás esetén Szükségünk van a belső szórásnégyzetre, ugyanis a kombinált becslés szórása csak a rétegeken belüli szóródásoktól függ, és független a rétegek közötti (külső) szóródástól Dr. Szalka Éva, Ph.D.

Arányos eloszlás esetén Az intervallum pedig: Dr. Szalka Éva, Ph.D.