Takács György Hegyi Barnabás előadásának felhasználásával

Slides:



Advertisements
Hasonló előadás
Bevezető Innovációs területek S+S Epilógus. pptPlex Section Divider Bevezető The slides after this divider will be grouped into a section and given the.
Advertisements

„Esélyteremtés és értékalakulás” Konferencia Megyeháza Kaposvár, 2009
Mobile Voice Communication Project Review •Cooperating partners: Cisco and T- Mobile, HTTP Foundation •Aim: new course on Cisco WLAN and Mobile.
English version A sablon nyelvének választása: /Format/Slide Design /majd jobb oldalt válaszd a másik be- ágyazott sablont! Projekt logó beállítása: /View/Master.
IP addressing Számítógép networkok gyakorlata ÓBUDAI EGYETEM 2011 TAVASZI FÉLÉV 3. LABORGYAKORLAT PRÉM DÁNIEL.
Tester Developer Architect Project Manager Business Analyst Designer Database Professional.
The Hungarian language
Nyereményjátékok és a Facebook - aki mer, az nyer!?”
Erőállóképesség mérése Találjanak teszteket az irodalomban
Takács György Hegyi Barnabás előadásának felhasználásával
21 Years of Partnership and Innovation 1989 Citrix Systems founded 2010 Citrix signed licensing agreement with Microsoft for NT Server Introduced Independent.
Optikai sugázrás hatása az emberi bőrre és szemre
Nyugdíjreform folyt. köv.? Pension Reform To Be Continued? Bodor András “PENSION REFORM IN HUNGARY: DO WE NEED ONE (PILLAR) MORE?” symposium Washington.
What is the Mission Situation in Hungary?. Dr. György KOVÁCS What Is The Mission Situation In Hungary? Presentation Design by Ed Nickle – United World.
„ Bottom-up” cluster development and cooperation in Hungary Hungarian Confederation of Clusters and Networks Conference on cluster-cooperation in the V4.
ENEREA - Észak –Alföld Regional Energy Agency Gábor Vámosi Managing director.
Árvai Zoltán Számalk Oktató központ.
Bevezetés a tárgyakhoz Tárgyak  Objects are the containers for values of a specified type  Objects are either signals, variables or constants  Once.
Fehérjék 4 Simon István. Predicting protein disorder - IUPred Basic idea: If a residue is surrounded by other residues such that they cannot form enough.
Rövid lézerimpulzusok aktív (nemlineáris) idő- és térszűrése
„21. századi közoktatás – fejlesztés, koordináció” TÁMOP / számú kiemelt projekt eTwinning: a digital touch in teacher training Klaudia.
Az erőátviteli rendszer
Infokom. rendsz. 1. előadás szep Infocommunication systems Infokommunikációs rendszerek 1. előadás Takács György.
Infokommunikációs rendszerek 12
Infokom. rendsz. 11. előadás nov Kommunikációs rendszerek alapjai 11. előadás Rádiós adathálózatok Bluetooth, ZigBee, WiFi, WiMAX, Takács.
Infokommunikációs rendszerek 11
Course Situation and Event Driven Models for Multilevel Abstraction Based Virtual Engineering Spaces Óbuda University John von Neumann Faculty of Informatics.
Vörös László PTE Térelemzés F. Farkas Tamás képeihez Vázlat Ybl 2011.
Európai Neutronkutató Központ létesítése Magyarországon
„MICROSOFT IT ÜZLETI INTELLIGENCIA MEGOLDÁS BEMUTATÓ” Avagy az IT adat vizualizációs lehetőségi egyéb szervezeti egységek felé („ablak” a nagyvilágra)
Projektmunka az NI-nál
szakmérnök hallgatók számára
Elektroanalitikához segédábrák Az ábrák több, részben szerzői jogokkal védett műből, oktatási célra lettek kivéve. Csak az intranetre tehetők, továbbmásolásuk,
Egy GAZDAG HIBAJELENTÉS elég információt tartalmaz ahhoz, hogy AZONNALI LÉPÉSEKET lehessen tenni, a javítás érdekében.
Kajcsos Zsolt MTA KFKI Részecske-és Magfizikai Kutató Intézet Nagyspinű és kisspinű állapotok tanulmányozása pozitrónium kölcsönhatások által.
Biometria I. SANB_BI1019 Pearson-féle Chi-négyzet (χ2) teszt Molnár Péter Állattani Tanszék
Null Hypothesis (H 0 ) is true He truly is not guilty Alternative Hypothesis (H 1 ) is true He truly is guilty Accept Null Hypothesis Acquittal Right decision.
Atomerőművi reaktor töltettervezése, fűtőelem átrakás, reaktorfizikai korlátok, indítási mérések Nemes Imre, Beliczai Botond PA Zrt.
EGEE-II INFSO-RI Enabling Grids for E-sciencE EGEE and gLite are registered trademarks P-GRADE Portal gyakorlat ismertető Gergely.
Hasznos ismeretek Hogyan bővítsük ismereteinket AVRDUDEflags -E noreset.
var q = ( from c in dc.Customers where c.City == "London" where c.City == "London" select c).Including( c => c.Orders ); select c).Including(
Tanulni, tanulni, tanulni Értékesítői képességek, a személyzet képzése.
Könyvtár, csomag és alprogramokVHDL Könyvtár, csomag és alprogram n Library és use n Package n Alprogramok –Procedure –Function –Resolution function Egy.
Budapesti Műszaki és Gazdaságtudomanyi Egyetem Elektronikus Eszközök Tanszéke 1 Tokozások termikus tesztje, minősítése.
Multilingual websites in Hungary Gabriella Szalóki Egy előadás könnyen vitára ösztönözheti a hallgatóságot. A PowerPoint bemutatók használatával azonban.
Készült az ERFP – DD2002 – HU – B – 01 szerzősésszámú projekt támogatásával Chapter 9 / 1 C h a p t e r 9 Semi-Rigid Connections in Steel Construction.
Készült az ERFP – DD2002 – HU – B – 01 szerzősésszámú projekt támogatásával Chapter 7 / 1 C h a p t e r 7 Behaviour of Plate Elements of Steel Frames.
Készült az ERFP – DD2002 – HU – B – 01 szerzősésszámú projekt támogatásával Chapter 6 / 1 C h a p t e r 6 Elastic Critical Plate Buckling Loads.
Készült az ERFP – DD2002 – HU – B – 01 szerzősésszámú projekt támogatásával Chapter 1 / 1 C h a p t e r 1 Introduction.
TALÁLTAM EGY OLDALT AHOL EZEKET A “TOJÁSOKAT” LEHET LÁTNI. NAGY MÛVÉSZNEK KELLET LENNI, HOGY ILYEN SZÉPEN TUDTA FORMÁZNI A TOJÁSOK HÉJÁT, DE SZERINTEM.
New Horizons in Brain Research & Gendered Innovation VALÉRIA CSÉPE Brain Imaging MTA RCNS, Budapest.
Web Application 1 Web Application 3 Web Application 2 Web Application 4 Shared Service Provider 1 Shared Service Provider 2 Excel Services1 Search1.
Design Thinking módszertan Juhász Dániel UI Designer / DT Coach Buday Balázs Product Owner / DT Coach.
Fej irányultságának becslése Ügyféltérben gyanús viselkedés jelzéséhez Kültéren kiegészítő hő szenzor szükséges.
Subcontractor management program 2008 Presenter: Attila Vincze Petrolszolg Ltd. Procurement and Slaes manager.
A KÖVETKEZŐKBEN SZÁMOZOTT KÉRDÉSEKET VAGY KÉPEKET LÁT SZÁMOZOTT KÉPLETEKKEL. ÍRJA A SZÁMOZOTT KÉRDÉSRE ADOTT VÁLASZT, VAGY A SZÁMOZOTT KÉPLET NEVÉT A VÁLASZÍV.
GSM Rádiós Hálózat Tervezése
D2A Pathway 2: End of Life Care – Home (usual place of residence)
Elmech Standards Workshop Content
Systems Hardware Business challenge
Overall Equipment Effectiveness (OEE)
TECHNICAL TRAINING December 2012.
What would x have to be in order for the mean to be 8?
Eastern Analytical Symposium, Princeton NJ
Developing, understanding and using nutrient boundaries
MusicNet East: ‘Changing Tunes’ Stevenage Musical Inclusion Project
Antibiotic Drug Prescription
PLATEminus™ V3 PLATEminus™ V3 is built with the same fully
Honors Español IV íOlé!.
Dalit Shental-Bechor, Turkan Haliloglu, Nir Ben-Tal 
Előadás másolata:

Takács György Hegyi Barnabás előadásának felhasználásával GSM network planning Takács György Hegyi Barnabás előadásának felhasználásával 2010. oc.t 20.

GSM network planning cases A – Planning new networks. First task is to provide radio coverage according to the geographic areas of service contract with minimal cost considering the further developments.. B – Planning upgrades of existing networks. Main tasks are serving the actual traffic and long run planning of frequency C – Planning for introduction of new technologies services and applications. E. G. Internet access via mobile networks, DVB-H, WHG (Wireless Home Gateway). 2010. oc.t 20.

Similarities and differences in A, B, C cases The radio wave propagation has just the same rules Available frequencies are limited The best places for BTS are already consumed Traffic is growing Techologies are changed very quickly People hate big antenna structures Radio interferences are increased People like small and beauty things Text books discusse mostly case A only We have globally about 3 billion mobile users. This needs the extended B case planning! Th Case C planning need absolute new approach due to the very low cell size and the handower and roaming in between different networks. The reusing the same frequency within 100 m needs new interference planning philosophy 2010. oc.t 20.

A GSM rádiós hálózat tervezésének folyamata A típusú szemléletben Bemenő adatok definiálása (input definition/customer requirements) Dimenzionálás (radio network dimensioning) Térképi adatok beszerzése (map data provisioning) Terjedési modell hangolása (propagation model tuning) Nominális cellaterv (nominal cellplan) Telephelykeresés (site candidate search) Végső cellaterv (final cellplan) Kezdeti rendszerhangolás (initial tuning) Átvételi vizsgálat (acceptance test) Kereskedelmi forgalomba helyezés (commercial launch) 2010. oc.t 20.

Input definition Figures of the service areas Area type (urban, suburban, rural, roads) Area size[km2] Traffic figures Traffic figures of subscribers [mE/előfiz.] Subscriber density [előfiz./km2] Grade of service - GoS [%] Coverage area probability - CAP) [%] Coverige type (indoor, outdoor, car) 2010. oc.t 20.

Bemenő adatok definiálása (2) Telephely paraméterek Tipikus antenna magasság [m] Tipikus kábelhossz (feeder length) [m] Hardver paraméterek/hardver kiválasztása Bázisállomás (BTS – base transciever) maximális kimenő teljesítménye [dBm] BTS érzékenysége [dBm] Rádióadóvevők (transciever – TRX) maximális száma BTS-enként [1] Antennanyereség [dBi] Rendszerparaméterek Frekvenciák száma [1] Működési frekvenciasáv (GSM 800, GSM 900, GSM 1800, GSM 1900) 2010. oc.t 20.

3GPP TR 43.030 V7.0.0 (2007-08) Technical Specification 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Radio network planning aspects (Release 7) The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented. This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices. 2010. oc.t 20.

Location probability Location probability is a quality criterion for cell coverage. Due to shadowing and fading a cell edge is defined by adding margins so that the minimum service quality is fulfilled with a certain probability. For car mobile traffic a usual measure is 90 % area coverage per cell, taking into account the minimum signal‑to‑noise ratio Ec/No under multipath fading conditions. For lognormal shadowing an area coverage can be translated into a location probability on cell edge For the normal case of urban propagation with a standard deviation of 7 dB and a distance exponential of 3.5, 90 % area coverage corresponds to about 75 % location probability at the cell edge. Furthermore, the lognormal shadow margin in this case will be 5 dB. 2010. oc.t 20.

Ec/No threshold The mobile radio channel is characterized by wideband multipath propagation effects such as delay spread and Doppler shift as defined in 3GPP TS 45.005 annex C. The reference signal to noise ratio in the modulating bit rate bandwidth (271 kHz) is Ec/No = 8 dB including 2 dB implementation margin for the GSM system at the minimum service quality without interference. The Ec/No quality threshold is different for various logical channels and propagation conditions as described in 3GPP TS 45.005. 2010. oc.t 20.

RF‑budgets The RF‑link between a Base Transceiver Station (BTS) and a Mobile Station (MS) including handheld is best described by an RF‑budget. Annex A consists of 7 such budgets; A.1 for GSM 900 MS class 4; A.2 for GSM 900 MS class 2, A.3 for DCS 1800 MS classes 1 and 2, A.4 for GSM 900 class 4 in small cells, A.5 for GSM 400 class 4 in small cells, A.6 for GSM 700 class 4 and A.7 for DCS 1800 MS class 1. GSM 900 RF-budgets should be used for 850 band. The Mean Effective Gain (MEG) of handheld MS in scattered field representing the cell range taking into consideration absorption, detuning and mismatch of the handheld antenna by the human body (MEG = -antenna/body loss) of -13 dBi for GSM 400, -10dBi for GSM 700, -9 dBi for GSM 900 and -6 dBi for DCS 1800 is incorporated in annex A.1, A.3, A.4 and A.5 as shown from measurements in Tdoc SMG2 1075/99. At 900 MHz, the indoor loss is the field strength decrease when moving into a house on the bottom floor on 1.5 m height from the street. The indoor loss near windows ( < 1 m) is typically 12 dB. However, the building loss has been measured by the Finnish PTT to vary between 37 dB and ‑8 dB with an average of 18 dB taken over all floors and buildings (Kajamaa, 1985). See also CCIR Report 567. 2010. oc.t 20.

RF‑budgets (2) At 1800 MHz, the indoor loss for large concrete buildings was reported in COST 231 TD(90)117 and values in the range 12 ‑ 17 dB were measured. Since these buildings are typical of urban areas a value of 15 dB is assumed in annex A.3. In rural areas the buildings tend to be smaller and a 10 dB indoor loss is assumed. The isotropic power is defined as the RMS value at the terminal of an antenna with 0 dBi gain. A quarter‑wave monopole mounted on a suitable earth‑plane (car roof) without losses has antenna gain 2 dBi. An isotropic power of ‑113 dBm corresponds to a field strength of 23.5 dBuV/m for 925 MHz and 29.3 dBuV/m at 1795 MHz, see CEPT Recommendation T/R 25‑03 and 3GPP TS 45.005 section 5 for formulas. GSM900 BTS can be connected to the same feeders and antennas as analog 900 MHz BTS by diplexers with less than 0.5 dB loss. 2010. oc.t 20.

Power Budgets . Downlink Budget PinMS = PoutBTS-Lf-Ga-Lpath Uplink Budget PinBTS = PoutMS-Lpath+Ga+(Gdiv)-Lf 2010. oc.t 20.

Okumura-Hata modell a terjedési veszteség számolására 2010. oc.t 20.

Large cells In large cells the base station antenna is installed above the maximum height of the surrounding roof tops; the path loss is determined mainly by diffraction and scattering at roof tops in the vicinity of the mobile i.e. the main rays propagate above the roof tops; the cell radius is minimally 1 km and normally exceeds 3 km. Hata’s model and its extension up to 2000 MHz). The field strength on 1.5 m reference height outdoor for MS including handheld for urban areas (section 5.2). The cell range can also be calculated by putting the maximum allowed path loss between isotropic antennas. The example RF‑budget shown a GSM900 MS handheld output power 2 W yields about double the range outdoors compared with indoors. This means that if the cells are dimensioned for handhelds with indoor loss 10 dB, the outdoor coverage for MS will be interference limited. Still more extreme coverage can be found over open flat land of 12 km as compared with 3 km in urban areas outdoor to the same cell site. For GSM 900 the Max EIRP of 50 W matches MS class 2 of max peak output power 8 W, see annex A.2. An example RF budget for DCS 1800. Range predictions are given for 1 W and 250 mW DCS 1800 MS with BTS powers which balance the up‑ and down‑ links. 2010. oc.t 20.

2010. oc.t 20.

2010. oc.t 20.

Example of RF‑budget for GSM 900 MS handheld RF‑output peak power 2 W 2010. oc.t 20.

Example of RF‑budget for GSM 900 MS handheld RF‑output peak power 2 W 2010. oc.t 20.

Example of RF‑budget for GSM 900 MS handheld RF‑output peak power 2 W 2010. oc.t 20.

2010. oc.t 20.

2010. oc.t 20.

Small cells Width of the road, w = 20 m Height of building roof tops, Hroof = 15 m Height of base station antenna, Hb = 17 m Height of mobile station antenna, Hm = 1.5 m Road orientation to direct radio path, Phi = 90° Building separation, b = 40 m For GSM 900 the corresponding propagation loss is given by: Loss (dB) = 132.8 + 38log(d/km) For DCS 1800 the corresponding propagation loss is given by: Loss (dB) = 142,9 + 38log(d/km) for medium sized cities and suburban centres Loss (dB) = 145,3 + 38log(d/km) for metropolitan centres 2010. oc.t 20.

2010. oc.t 20.

Forgalmi tervezés Az épülő GSM hálózatok esetében általában a lefedettség a szűk keresztmetszet Egy cella kapacitásának számítása TRX-enként 8 időrés (time slot – TS) Az első (BCCH) TRX-en csak 7 időrés használható beszédforgalomra Capacitycell = ErlangB(8 * NTRX-1, GoS) Egy cella forgalmának számítása Trafficcell = Acell * densitysubscriber * Trafficsubscriber Ellenőrzés Ha Capacitycell >= Trafficcell, akkor nincs szükség az állomások számának növelésére Ha Capacitycell < Trafficcell, akkor bővíteni kell az állomások számát, forgalmi tervezésre van szükség 2010. oc.t 20.

GSM system planning steps in case A Bemenő adatok definiálása (input definition/customer requirements) Dimenzionálás (radio network dimensioning) Térképi adatok beszerzése (map data provisioning) Terjedési modell hangolása (propagation model tuning) Nominális cellaterv (nominal cellplan) Telephelykeresés (site candidate search) Végső cellaterv (final cellplan) Kezdeti rendszerhangolás (initial tuning) Átvételi vizsgálat (acceptance test) Kereskedelmi forgalomba helyezés (commercial launch) 2010. oc.t 20.

Forgalmi tervezés Az épülő GSM hálózatok esetében általában a lefedettség a szűk keresztmetszet Egy cella kapacitásának számítása TRX-enként 8 időrés (time slot – TS) Az első (BCCH) TRX-en csak 7 időrés használható beszédforgalomra Capacitycell = ErlangB(8 * NTRX-1, GoS) Egy cella forgalmának számítása Trafficcell = Acell * densitysubscriber * Trafficsubscriber Ellenőrzés Ha Capacitycell >= Trafficcell, akkor nincs szükség az állomások számának növelésére Ha Capacitycell < Trafficcell, akkor bővíteni kell az állomások számát, forgalmi tervezésre van szükség 2010. oc.t 20.

New methods in the GSM system to improve frequency efficiency Frequency reusing Frequency hopping Multiple Reuse Pattern (MRP) Fractional Load Planning Synchronisation 2010. oc.t 20.

Frekvenciák újrafelhasználása Akkor optimális a frekvencia kiosztás, ha azonos frekvenciájú cellák szabályos háromszöges rácson helyezkednek el (D) A „nagy hatszögön belül minden frekvencia pontosan háromszor fordul elő K csak meghatározott alakú egészszám lehet! D jb R ia b a 2010. oc.t 20.

Azonos csatornás jel-interferencia viszony Körsugárzó állomások 6 legközelebbi zavaró állomás Példa: 12-es újrafelhasználás Szektorizált állomások 2 legközelebbi zavaró állomás Példa: 4/12-es újra felhasználás szektorizáció 2010. oc.t 20.

Frekvenciaugratás Frekvencia-szelektív (többutas) fading csökkentése Frekvencia-diversity Interferencia-átlagolás Egyenletesebb beszédminőség Szűkebb frekvencia újrafelhasználás lehetősége Interferencia-diversity Frekvenciaugratási gyakoriság: 1 TDMA keret = 4.165 ms 2010. oc.t 20.

Frekvenciaugratási megoldások Sythesized hopping TRX-ek és frekvenciák száma független Csak hybrid combiner alkalmazása lehetséges Szélessávú Kétbemenet (kaszkád kapcsolás lehet szükséges) Viszonylag nagy veszteség (3-3.5 dB) Baseband hopping Ahány TRX, pontosan annyi frekvencia Filter combiner alkalmazása lehetséges Hangolható, keskenysávú bemenetek Nagyszámú bemenet Kis veszteség 2010. oc.t 20.

Frekvencia ugratási szekvenciák HSN FNOFFSET MAIO (8 hopping frekvencia) 1 3 4 2 3 7 5 1 4 6 ... 4 2 3 7 5 1 4 6 ... 2 3 7 5 1 4 6 ... +1 (mod 8) HSN: Hopping Sequence Number FNOFFSET: Frame Number Offset MAIO: Mobile Allocation Index Offset MAI: Mobile Allocation Index Periódusidő kb. 6 perc Az azonos HSN-nel és FNOFFSET-tel ,de különböző MAIO-val bíró frekvencia ugratási szekvenciák (frequency hopping sequence - FHS) ütközési rátája zérus 2010. oc.t 20.

Multiple Reuse Pattern (MRP) Baseband hopping esetén alkalmazzuk A különböző TRX-hez különböző újrafelhasználás szerint allokálunk frekvenciát Az egyre nagyobb sorszámú TRX-ek esetén az újrafelhasználás egyre szűkebbé tehető, hiszen a kisebb újrafelhasználású frekvenciacsoportok frekvenciái viszonylag kevesebb ideig lesznek kint a levegőben (több frekvencián „ugrik” a cella) Feltételezhetően az egyre nagyobb TRX-számmal rendelkező cellákból viszonylag egyre kevesebb van Bővítés esetén újratervezésre van szükség TRX0 – 12-es újrafelhasználás TRX1 – 7-es újrafelhasználás TRX2 – 4-es újrafelhasználás 2010. oc.t 20.

Fractional Load Planning 1/1 Minden cellába ugyanazt az frekvencia ugratási (frekvencia)halmazt allokáljuk 1/3 Három frekvencia ugratási (frekvencia)halmazt hozunk létre és ezekből egy cellához pontosan egyet allokálunk 3-as újrafelhasználással 1/1 Előnyei Nem igényel különösebb frekvenciatervezést Jól alkalmazható egyenlőtlen forgalomeloszlást esetén Újabb TRX-ek beépítésekor nincs szükség frekvenciatervezésre Mikor előnyös alkalmazni 1/3: viszonylag keskeny frekvenciatartomány esetén 1/1: 7 MHz-nél keskenyebb frekvenciatartomány esetén A gyakorlatban 0.5-0.7-es fractional loadig terhelhetők a rendszerek 1/3 2010. oc.t 20.

A szinkronizáció fejlődése Cellaszinkron Állomásszinkron Klaszterszinkron Az azonos színű cellák nem zavarják egymást. Cellaszintű szintű szinkronizáció Azonos HSN és FNOFFSET cellán belül Cellaszintű MAIO tervezés Cellák közötti HSN tervezés Állomásszintű szinkronizáció Azonos HSN és FNOFFSET állomáson belül Állomásszintű MAIO tervezés Állomások közötti HSN tervezés Klaszterszintű szinkronizáció Azonos HSN és FNOFFSET klaszteren belül Klaszterszintű MAIO tervezés Kaszterek közötti HSN tervezés 2010. oc.t 20.