Textúrák, világmodellek

Slides:



Advertisements
Hasonló előadás
L ÁTHATÓSÁG MEGHATÁROZÁSA tavaszi félév.
Advertisements

Számítógépes geometriai leíró nyelvek
2D képszintézis Szirmay-Kalos László.
Geometriai Transzformációk
2D grafikus rendszerek Szirmay-Kalos László. 2D grafikus editor: GUI, use-case, dinamikus modell L L L R LD LU MouseLDown első pont MouseLDown második...
Analitikus (koordináta) geometriai gyorstalpaló
Geometriai transzformációk
Inkrementális 3D képszintézis
GPU Szirmay-Kalos László.
Geometriai modellezés
Inkrementális 3D képszintézis Szirmay-Kalos László.
OpenGL Szirmay-Kalos László In theory, there is no difference
2D képszintézis Szirmay-Kalos László. Számítógépes grafika feladata képszintézis Virtuális világ modell modellezés Metafórák: 2D rajzolás világ = sík.
Geometriai modellezés
Számítógépes grafika Szirmay-Kalos László
3D Játékok készítése OpenGL környezetben
Számítógépes grafika Szirmay-Kalos László
3D képszintézis fizikai alapmodellje
Virtuális világ tárolása Szirmay-Kalos László. Belső világ tárolása l Geometria: pontok koordinátái l Topológia: élek-pontok; lapok-pontok;... l hierarchia:
Bevezetés.  A számítógépes grafika inkrementális képszintézis algoritmusának hardver realizációja  Teljesítménykövetelmények:  Animáció: néhány nsec.
GPGPU labor I. OpenGL, Cg.
 Nincs szinkronizáció és kommunikáció  Csővezeték alkalmazása  Párhuzamosítás Proc 2Proc 1 Csővezeték Proc 1 Proc 21 Proc 22 Párhuzamosság.
Eltérés a CAD és GIS adatszerkezetek között CAD (DXF, DWG, DGN)GIS (Shape, TAB, GeoBase) Sokféle elem típusPont, törtvonal, felület, (szöveg) Egy fájl.
Transzformációk kucg.korea.ac.kr.
A számítógépi grafika matematikai háttere
Számítógépes grafika, PPKE-ITK, Benedek Csaba, D képszintézis 4. előadás.
Számítógépes grafika, PPKE-ITK, Benedek Csaba, 2010 Geometriai modellezés 2. előadás.
A számítógépes grafika céljai és feladatai
A számítógépes grafika céljai és feladatai
Mérnöki objektumok leírása és elemzése virtuális terekben c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek.
Dr. Horváth László – PLM – CCM – 2. előadás: Határfelület-ábrázolás és Euler -i topológia A CAD/CAM modellezés alapjai Dr. Horváth László Budapesti.
A virtuális technológia alapjai Óbudai Egyetem Neumann János Informatikai Kar, Alkalmazott Matematikai Intézet 4. Előadás Alakmodell fejlesztése Alak építése.
Modellezés és tervezés c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Alkalmazott Informatikai Intézet Mérnöki Informatikus MSc.
3. Vetületi ábrázolások számítási eljárásai
2D képszintézis és textúrák
4.7. Textúra A felület anyagszerűsége Sík-képek ráborítása a felületre
Számítógépes Grafika Programtervező informatikus (esti)‏ Textúrázás.
2008/2009 tavasz Klár Gergely  Gyakorlatok időpontjai: ◦ Szerda 10:05–11:35 ◦ Csütörtök 10:00+ε –11:30+ε  Gyakvez: ◦ Klár Gergely ◦
Bevezetés az alakmodellezésbe II. Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I.
1 A geometriai modell és struktúrája Budapesti Műszaki Főiskola A CAD/CAM modellezés alapjai 2000/2001 tanév, II. félév 2. előadás A geometriai modell.
AAO Csink László november.
Pixel műveletek, képek Szirmay-Kalos László.
Játékfejlesztés.
2D képszintézis Szirmay-Kalos László.
Analitikus geometria gyorstalpaló
Játékfejlesztés Szirmay-Kalos László.
Inkrementális 3D képszintézis Szirmay-Kalos László.
Számítógépes grafika Bevezetés
3D képszintézis fizikai alapmodellje Szirmay-Kalos László Science is either physics or stamp collecting. Rutherford.
Rendering pipeline Ogre3D
Transzformációk Szirmay-Kalos László. Transzformációk (x,y) (x’,y’) = T(x,y) l Tönkre tehetik az egyenletet l Korlátozzuk a transformációkat és az alakzatokat.
Textúrák Grafikus játékok fejlesztése Szécsi László g07-texture.
Grafikus játékok fejlesztése Szécsi László t09-texture
Inkrementális 3D képszintézis
GRÁFELMÉLET.
Számítógépes Grafika 7. gyakorlat Programtervező informatikus (esti)‏ 2009/2010 őszi félév.
Árnyalás – a felületi pontok színe A tárgyak felületi pontjainak színezése A fényviszonyok szerint.
2.2. Az egyenes és a sík egyenlete
Parametrikus programozás
Geometriai transzformációk
Számítógépes grafika, PPKE-ITK, Benedek Csaba, 2010 Geometriai modellezés 2. előadás.
Informatikai eszközök a virtuális valóság szolgálatában Hapák József ELTE-IK X. Eötvös Konferencia.
Számítógépes Grafika OpenGL 4 shaderek, GLSL. OpenGL 4 A következő programozható fázisok vannak a 4.x-es OpenGL-ben: Vertex shader Tesselation control.
A számítógépes grafika alapjai, PPKE-ITK, Benedek Csaba, 2010 Tanagyag forrás © Szirmay-Kalos László, BME A számítógépes grafika céljai és feladatai 1.
Képek, képfeldolgozás Szirmay-Kalos László.
Bevezetés.  Miért …  … egyszálúan programozunk?  … probléma ez?  Hogyan …  … változik ez?  … tudjuk kihasználni?  Megéri-e párhuzamosítani?
3D grafika összefoglalás
Görbék, felületek.
GPGPU – CUDA 2..
Bevezetés GPGPU Alkalmazások.
Előadás másolata:

Textúrák, világmodellek 6. előadás Számítógépes grafika, PPKE-ITK, Benedek Csaba, 2010

Testek Ellenpéldák Érvényes testek: reguláris halmaz nem lehetnek alacsony dimenziós elfajulásai minden határpont mellett van belső pont Garantáltan érvényes testet építő módszerek 2.5 dimenziós eljárások speciális felületi modellezés: B-rep Konstruktív tömörtest geometria

2.5 dimenziós módszerek Kihúzás: extrude Forgatás: rotate

Felületmodellezők Test = határfelületek gyűjteménye Topológiai ellenőrzés (Euler tétel): csúcs + lap = él + 2

B-rep: Euler operátorok

Gyakorlati Euler operátorok Edge split csúcs + lap = él + 2 Poligon split Élzsugorítás v. csúcspont összevonás -Edge Collapse

Gyakorlati Euler operátorok Poligon kihúzás (Face extrude): ep: a poligon éleinek a száma 2ep új él, ep+1 új lap, ep új csúcs 1 eltűnő lap e’=e+2ep l’=l+ep+1-1 c’=c+ep l’+c’=l+c+2ep=e+2+2ep=e’+2

Poligon modellezés: téglatest

Poligon modellezés: 1. extruding poligon kihúzás

Poligon modellezés: 2. extruding mégegy poligon kihúzás

Poligon modellezés: 4. és 5. extruding még két poligon kihúzás

Poligon modellezés: 6. extruding

Subdivision simítás

Konstruktív tömörtest geometria (Constuctive Solid Geometry (CSG) Összetett testeket primitív testekből halmazműveletek (egyesítés, metszet, különbség) alkalmazásával építi fel Regularizált műveletek

CSG fa 15

Virtuális világ tárolása

Belső világ tárolása Geometria: pontok koordinátái Topológia: élek-pontok; lapok-pontok;... hierarchia: objektum-lapok-élek-pontok transzformáció: lokális és világkoordináta rendszerek modellező képszintézis világ VRML, 3DS, OBJ, DXF IGES, MB, MD2,... fáljkonv 17

Egyszerű hierarchikus modell Objektum obj1 szakasz1 Bezier kör Primitív point1 point1 point1 Pont point3 point4 point5 point6 18

Geometria kiemelése obj1 szakasz1 Bezier kör x y 19

Szárnyasél adatstruktúra class BRepCore { … public: void MEVVF(…); void MVE(float t, Edge& e); void MEF(Vertex& v1,Vertex& v2); void Move(Vertex& v, Vector p); }; class BRep : BRepCore { void FaceExtrude( ); void FaceSplit( ); void EdgeCollapse( ); void VertexSplit( ); él Pont +(x,y) lap 20

Hierarchikus színtér gráfok Ferrari haladási transzformáció Karosszéria Kerék1 transzformáció Kerék2 transzformáció Kerék Forgatási transzformáció kerék

Textúra leképzés Összetett mintázatú felületek (pl perzsaszőnyeg) BRDF-leírása nehézkes bonyolult modellezés, hosszú képszintézis  Megoldás: textúra Bittérképes textúra: 2-D képet rendelünk a felülethez, a képpontok a felületelem színét tartalmazzák Procedurális textúra: generáló műveletsorral írjuk le a mintázatot

Textúra leképzés: anyagjellemzők változnak a felületen

(2D) Textúra leképzés Paraméterezés Nézeti transzformáció v (x,y,z) z u v (x,y,z) z y x Kép (elemei a „texel”-ek) vagy függvény x = fx(u,v) y = fy(u,v) z = fz(u,v) u,v  [0,1]

Textúra-tér - képtér Textúra alapú leképzés: a textúra-térben levő ponthoz keresi meg a hozzá tartozó pixelt Hatékony, de nem garantálja hogy a textúra-térben kijelölt pontok a képernyőn is egyenletesen helyezkednek el („lyukas lehet a kép”) A képtér alapú leképzés: a pixelhez keresi meg a hozzá tartozó textúra elemet Vetítési transzformáció inverze! Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

Textúra leképzés sugárkövetésnél Inverz paraméterezés u v (x,y,z) z y x Gömb példa: x = x0 + r cos 2u sin v y = y0 + r sin 2u sin v z = z0 + r cos v u,v  [0,1] u = 1/2 (atan2((y-y0), (x-x0)) +) v = 1/ acos( (z-z0)/r )

Modell-világ-képernyő transzf. Inkrementális képszintézis Paraméterezés Modell-világ-képernyő transzf. [Xh, Yh, Zh, h] = [x,y,z,1]TC (X,Y)= [Xh/h, Yh/h] u v (x3,y3,z3) Y (u1, v1) z (X1,Y1) (x2,y2,z2) (u3, v3) (u2, v2) (X3,Y3) (x1,y1,z1) (X2,Y2) y X x

Lineáris interpoláció Leképzés: 2x3 mátrix 6 egyenlet 6 ismeretlen u v u=au X+buY+cu v=av X+bvY+cv Y (X1,Y1) (u1, v1) (u3, v3) (u2, v2) (X3,Y3) u(X,Y) X (X2,Y2) X számláló u regiszter CLK S X Interpolációs feltétel: au lineáris u1=au X1+buY1+cu u2=au X2+buY2+cu u3=au X3+buY3+cu jó v1=av X1+bvY1+cv v2=av X2+bvY2+cv v3=av X3+bvY3+cv

P: homogén lineáris Tv: homogén lineáris u v (x,y,z) z y x Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

Perspektíva helyes textúrázás Paraméterezés Modell-világ-képernyő transzf. xq=ax u+bxv+cx yq=ay u+byv+cy zq=az u+bzv+cz q=aq u+bqv+cq [Xh, Yh, h] = [x q,y q,z q,q]TV(4x3) (X,Y) = [Xh/h, Yh/h] u v Y [Xh1,Yh1,h1] (u1, v1) [Xh3,Yh3,h3] z (u3, v3) (u2, v2) y [Xh2,Yh2,h2] x X [u,v,1]TC(3x3) = [Xh, Yh, h], [u/h,v/h,1/h] = [X,Y,1]TC-1

TC-1 mátrixelemek [u/h,v/h,1/h] = [X,Y,1]TC-1 u v Y au, av , ah bu, bv , bh cu, cv , ch TC-1 = [u/h,v/h,1/h] = [X,Y,1]TC-1 u v Y [Xh1,Yh1,h1](X1,Y1) (u1, v1) (u3, v3) (u2, v2) [Xh3,Yh3,h3] ( X3,Y3 ) [Xh2,Yh2,h2](X2,Y2) X u1/h1 =au X1+buY1+cu u2/h2 =au X2+buY2+cu u3/h3 =au X3+buY3+cu v1/h1 =av X1+bvY1+cv v1/h1 =av X2+bvY2+cv v1/h1 =av X3+bvY3+cv 1/h1=ah X1+bhY1+cw 1/h2=ah X2+bhY2+cw 1/h3=ah X3+bhY3+cw au ,bu,cu av ,bv,cv ah ,bh,ch Tc-1: leképzés: 3x3 mátrix 9 egyenlet 9 ismeretlen

Perspektíva helyes textúrázás u v Y Perspektív helyes X lineáris au X+buY+cu u/h = au X+buY+cu v/h = av X+bvY+cv 1/h = ah X+bhY+ch u = v = ah X+bhY+ch av X+bvY+cv ah X+bhY+ch

Perspektíva helyes interpolációs hw. R G B X Textúra memória u v Div Div [u/h](X,Y) [v/h](X,Y) [1/h](X,Y) X számláló [u/h] regiszter [v/h] regiszter [1/h] regiszter S S S CLK au av ah

Textúra függvény definíciója Parametrikus felületeknél triviális 2. Implicit felületeknél és poligonmodellnél: közvetítő felületek v (u1,v1) (u3,v3) (u2,v2) (1,1) (0,0) u (x3,y3,z3) z (x2,y2,z2) (x1,y1,z1) közvetítő felület = téglalap y x

Henger (gömb) közvetítő felület

Téglalap közvetítő felület: textúratér nézet A kiterített közvetítő felületre texúrázott minta látható

Téglalap közvetítő felület: textúratér nézet

Textúrázott űrhajó

Textúrázás = kiterítés Torzításcsökkentés relaxációval

Textúrák szűrése v Y pixel ősképe u X

Mip-map adatstruktúra Y X

Bucka leképzés (Bump mapping) Tároljuk a normálvektort táblázatban vagy a felületi elmozdulást

Textúrák az OpenGL-ben Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

A textúraobjektumok elnevezése void glGenTextures(GLsizei n, GLuint *textureNames); n darab, jelenleg használaton kívüli textúraobjektum nevet a vissza a textureNames tömbbe. A visszaadott nevek nem feltétlenül egymást követő egészek Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

A textúraobjektumok létrehozása, használata void glBindTexture(GLenum target, GLuint textureName); Target: GL_TEXTURE_1D, GL_TEXTURE_2D, vagy GL_TEXTURE_3D, Ha először hívjuk a textureName azonosítóval: létrehoz egy textútraobjektumot és hozzákapcsolja a névhez Ha nem először hívjuk: textureName azonosítójú textúrát teszi kurrenssé Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

Textúra beállítása void glTexParameter{if}(GLenum target, GLenum pname, TYPE param); Target: GL_TEXTURE_1D, GL_TEXTURE_2D, vagy GL_TEXTURE_3D, Pname, param: számos paraméterezési lehetőség (lásd OpenGL referencia) Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

Textúra beállítás - példák glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); Nagyításhoz ill kicsinyítéshez használt interpoláció (GL_NEAREST mellett lehet még GL_LINEAR) Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

Textúra beállítás - példák glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); x és y (itt s és t) irányú ismétlődés (wrap=burkolat), lehet: GL_CLAMP - rögzített GL_REPEAT – ismétlődő parketta Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

Textúra beállítás - példák void glTexImage2D(GLenum target, GLint level, GLint internalFormat, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const GLvoid *texels); 2D struktúrát hoz létre. Target: GL_TEXTURE_2D (vagy más) level > 0 ha több felbontást használunk internalFormat: használt színkomponensek pl GL_RGBA GLsizei width, GLsizei height: a textúraobj mérete Border: határ szélessége (lehet 0) Format, type: a textúraadatok formátuma pl format=GL_RGBA, type= GL_UNSIGNED_BYTE texels: a textúra-minta adatait tartalmazó tömb Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

Minta textúra inicializálása static GLubyte textDescriptor[height][width][4]; static GLuint texName[2]; ... glGenTextures(1, texName); glBindTexture(GL_TEXTURE_2D, texName[0]); glTexParameteri(…); … glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, textDescriptor); Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

Textúra paraméterezése void glTexCoord{1234}{sifd}(TYPE coords); Textúra kooridnátái: s,t,r,q (~x,y,z,w), ahol q=1 ált. A kurrens (s,t,r,q) textúrakoordinátákat állítja be. Az ezt követően létrehozott csúcspontokhoz a rendszer ezt a textúrakoordinátát rendeli Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

Textúra paraméterezése, példa glBegin(GL_QUADS); glTexCoord2f(0, 0); glVertex3d(1,-1,0); glTexCoord2f(0, 1); glVertex3d(-1,-1,0); glTexCoord2f(1, 1); glVertex3d(-1,1,0); glTexCoord2f(1, 0); glVertex3d(1,1,0); glEnd(); Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME

Textúra és saját szín kombinálása glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); GL_TEXTURE_ENV_MODE lehet: GL_REPLACE – a textúrával felülírjuk a saját v. megvilágításból adódó színt GL_MODULATE – a megjelenített színt a textúrából és a saját színből közösen számítjuk Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME Számítógépes Grafika 2010, PPKE ITK, Benedek Csaba Tanagyag forrás ® Szirmay-Kalos László, BME