Mérés és adatgyűjtés Szenzorok I. Mingesz Róbert

Slides:



Advertisements
Hasonló előadás
Tamás Kincső, OSZK, Analitikus Feldolgozó Osztály, osztályvezető A részdokumentumok szolgáltatása az ELDORADO-ban ELDORADO konferencia a partnerkönyvtárakkal.
Advertisements


Kamarai prezentáció sablon
„Esélyteremtés és értékalakulás” Konferencia Megyeháza Kaposvár, 2009
Számítógépes mérések fizikai kísérletekben Dr. Almási Gábor Pécsi Tudományegyetem Fizikai Intézet Fizikai Informatika Tanszék.
Erőállóképesség mérése Találjanak teszteket az irodalomban
MATEMATIKA Év eleji felmérés 3. évfolyam
Humánkineziológia szak
Mellár János 5. óra Március 12. v
Elektromos mennyiségek mérése
Mérés és adatgyűjtés laboratóriumi gyakorlat Virtuális méréstechnika levelező Mingesz Róbert 5. Óra MA-DAQ – Műszer vezérlése November 26.
Koordináta transzformációk
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke A termikus tesztelés Székely Vladimír.
Utófeszített vasbeton lemez statikai számítása Részletes számítás
A tételek eljuttatása az iskolákba
Elektronikai Áramkörök Tervezése és Megvalósítása
Elektronikai Áramkörök Tervezése és Megvalósítása
Mérés és adatgyűjtés laboratóriumi gyakorlat Karakterisztikák mérése 1 Makan Gergely, Mingesz Róbert, Nagy Tamás V
Elektronikai Áramkörök Tervezése és Megvalósítása
Mérés és adatgyűjtés levelező tagozat
Mérés és adatgyűjtés Kincses Zoltán, Mingesz Róbert, Vadai Gergely 10. Óra MA-DAQ – Műszer vezérlése November 12., 15. v
Mérés és adatgyűjtés Szenzorok II. Mingesz Róbert
Virtuális méréstechnika 12. Óra Karakterisztikák mérése November 21. Mingesz Róbert v
Mérés és adatgyűjtés laboratóriumi gyakorlat levelező 4. Óra Karakterisztikák mérése November 23. Kincses Zoltán, Mellár János v
Zajok és véletlen jelenségek interdiszciplináris területeken való alkalmazásának kutatása és oktatása. TÁMOP A/2-11/ Termisztor önfűtése.
Virtuális méréstechnika MA-DAQ műszer vezérlése 1 Mingesz Róbert V
Ember László XUBUNTU Linux (ami majdnem UBUNTU) Ötödik nekifutás 192 MB RAM és 3 GB HDD erőforrásokkal.
VÁLOGATÁS ISKOLÁNK ÉLETÉBŐL KÉPEKBEN.
Védőgázas hegesztések
VILÁGÍTÁSTECHNIKAI TÁRSASÁG LEDek alkalmazása a világítástechnikában
Szerkezeti elemek teherbírásvizsgálata összetett terhelés esetén:
Sárgarépa piaca hasonlóságelemzéssel Gazdaság- és Társadalomtudományi kar Gazdasági és vidékfejlesztési agrármérnök I. évfolyam Fekete AlexanderKozma Richárd.
NOVÁK TAMÁS Nemzetközi Gazdaságtan
DRAGON BALL GT dbzgtlink féle változat! Illesztett, ráégetett, sárga felirattal! Japan és Angol Navigáláshoz használd a bal oldali léptető elemeket ! Verzio.
Lineáris egyenletrendszerek (Az evolúciótól a megoldáshalmaz szerkezetéig) dr. Szalkai István Pannon Egyetem, Veszprém /' /
szakmérnök hallgatók számára
2. A KVANTUMMECHANIKA AXIÓMÁI 1. Erwin Schrödinger: Quantisierung als Eigenwertproblem (1926) 2.
Mechanikai Laboratórium
A szemcsehatárok tulajdonságainak tudatos módosítása Szabó Péter János BME Anyagtudomány és Technológia Tanszék Anyagvizsgálat a gyakorlatban (AGY 4) 2008.
Az LPQI rész a Partner Az LPQI-VES társfinanszírozója: Dr. Dán András Az MTA doktora, BME VET Meddőenergia kompenzálás elmélete és alkalmazása.
3. A HIDROGÉNATOM SZERKEZETE
2007. május 22. Debrecen Digitalizálás és elektronikus hozzáférés 1 DEA: a Debreceni Egyetem elektronikus Archívuma Karácsony Gyöngyi DE Egyetemi és Nemzeti.
Hősugárzás vizsgálata integrált termoelemmel
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke A termikus tesztelés Székely Vladimír.
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Integrált mikrorendszerek II. MEMS = Micro-Electro-
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Integrált mikrorendszerek II. MEMS = Micro-Electro-
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 Integrált mikrorendszerek:
MIKROELEKTRONIKA, VIEEA306
A pneumatika alapjai A pneumatikában alkalmazott építőelemek és működésük vezérlő elemek (szelepek)
HÍDÉPÍTÉS Acélszerkezetek
Csurik Magda Országos Tisztifőorvosi Hivatal
A klinikai transzfúziós tevékenység Ápolás szakmai ellenőrzése
2006. Peer-to-Peer (P2P) hálózatok Távközlési és Médiainformatikai Tanszék.
QualcoDuna interkalibráció Talaj- és levegövizsgálati körmérések évi értékelése (2007.) Dr. Biliczkiné Gaál Piroska VITUKI Kht. Minőségbiztosítási és Ellenőrzési.
Virtuális méréstechnika a középiskolai kísérletező oktatásban
Az EDAQ530 használata Szeged, 2010.
MIKROELEKTRONIKA, VIEEA306
1. Melyik jármű haladhat tovább elsőként az ábrán látható forgalmi helyzetben? a) A "V" jelű villamos. b) Az "M" jelű munkagép. c) Az "R" jelű rendőrségi.
Virtuális Méréstechnika Sub-VI és grafikonok 1 Makan Gergely, Vadai Gergely v
Mérés és adatgyűjtés laboratóriumi gyakorlat - levelező Sub-VI és grafikonok 1 Mingesz Róbert V
Mérés és adatgyűjtés laboratóriumi gyakorlat Mérések MA-DAQ műszerrel 1 Makan Gergely, Mingesz Róbert, Nagy Tamás V
> aspnet_regiis -i 8 9 TIPP: Az „Alap” telepítés gyors, nem kérdez, de később korlátozhat.
Rézkábel hibái.
Mérés és adatgyűjtés laboratóriumi gyakorlat – levelező NI adatgyűjtők programozása 1 Mingesz Róbert V
A KÖVETKEZŐKBEN SZÁMOZOTT KÉRDÉSEKET VAGY KÉPEKET LÁT SZÁMOZOTT KÉPLETEKKEL. ÍRJA A SZÁMOZOTT KÉRDÉSRE ADOTT VÁLASZT, VAGY A SZÁMOZOTT KÉPLET NEVÉT A VÁLASZÍV.
Az ember kapcsolata a külvilággal Cél: létfenttartás, komfort megismerés (tudomány, oktatás) gazdaságosság … külvilág érzékelés beavatkozás feldolgozás.
1 Az igazság ideát van? Montskó Éva, mtv. 2 Célcsoport Az alábbi célcsoportokra vonatkozóan mutatjuk be az adatokat: 4-12 évesek,1.
Lord Kelvin William Thomson ( )
HŐMÉRSÉKLETMÉRÉS Udvarhelyi Nándor április 16.
Érzékelők Sándorfalvi György
Előadás másolata:

Mérés és adatgyűjtés Szenzorok I. Mingesz Róbert 2014. április 24. v4.0

Tartalom Szenzorok Hőmérséklet mérése Fény érzékelése

Szenzorok

Digitális mérőműszer

A szenzorok működése Energia-átalakítás történik Energiafajták: Sugárzási energia, mechanikai energia, hőenergia, villamos energia, mágneses energia, kémiai energia

Szenzorok jellemzése Bemeneti fizikai mennyiség pl. hőmérséklet, elmozdulás, mágneses térerősség... Kimenő fizikai mennyiség (általában elektromos mennyiség) pl. feszültség, áramerősség, ellenállás... Karakterisztika: a kimenet függése a bemeneti mennyiségtől lineáris / nem lineáris Érzékenység pl. 3 mV/°C

Szenzorok jellemzése Működési elv Aktív pl: termóelem, pH-mérő, fényelem Passzív működéséhez segédenergiára van szükség pl: termisztor, fotóellenállás, Hall-szonda Kialakítás Elérhetőség

Szenzorok tulajdonságai Mérési tartomány Zajhatár: ennél kisebb jelek változása már elvész a zajban Túlterhelési tartomány Felbontóképesség Nullpont-hiba Érzékenység hiba Hiszterézis Linearitás-hiba / alakhiba

Szenzorok tulajdonságai Drift (kúszás) Hőmérsékletfüggés Környezeti hatásokra való érzékenység pl. rezgések, nyomás, nedvesség... Beállási idő Sávszélesség, frekvencia-karakterisztika Követett szabványok pl. IEEE 1451, TEDS Kalibrálás szükségessége

Hőmérséklet mérése

Hőmérséklet mérése A legtöbb folyamat, fizikai, kémiai... tulajdonság hőmérsékletfüggő pl. sűrűség, ellenállás, reakciósebesség... Az egyik leggyakrabban mért paraméter

Mérés elve Hőmérsékletváltozás hatására változás áll be a szenzorban vezetőképesség megváltozása thermoelektromos effektusok hőtágulás hallmazállapot-változás kémiai reakció (egyensúly eltolódás)

Megfelelő hőkontaktus Hőátadás közvetlen érintkezés Hővezetés valamilyen közeg viszi át a hőenergiát Hősugárzás elektromágneses sugárzás útján

Bimetál kapcsoló Két állapot Hiszterézis

Ellenállás-hőmérők RTD

Fémek ellenállása Fémek ellenállása hőmérsékletfüggő Ok: ionok hőmozgása T nő → R nő

PT 100 Platina PT100 szenzorok: 0 °C: 100 Ω Mérési tartomány: -260 °C ..850 °C

Ellenállás hőmérők Nagy pontosság Alacsony drift Széles mérési tartomány Reagálási: idő néhány másodperc Típikus méret > 3 mm Ár > 2000 Ft

Ellenállás hőmérők mérése Feladat: nagy pontossággal és felbontással (24 bit) mérni az ellenállás változást

Ellenállás hőmérők bekötése

Termisztor NTC

Ellenállás hőmérsékletfüggése Hőmérséklet növekedése → töltéshordozók számának növekedése → ellenállás csökkenése Általános képlet: 𝑅 𝑇 = 𝑅 𝑟𝑒𝑓 ∙ 𝑒 𝐴+ 𝐵 𝑇 + 𝐶 𝑇 2 + 𝐷 𝑇 3 Közelítés: 𝑅 𝑇 = 𝑅 25 ∙ 𝑒 𝐵 25/85 𝑇 − 𝐵 25/85 𝑇 25

Termisztor 𝑇= 1 1 𝑇 25 + 1 𝐵 25/85 ∙ln 𝑅 𝑇 𝑅 25 V0 𝑅 𝑇 = 𝑅 0 ∙ 𝑉 𝑇 / 𝑉 0 1− 𝑉 𝑇 / 𝑉 0 R0 VT A/D Rt 𝑇 25 =273.15+25 K 𝐵 25/85 =3977 K 𝑅 0 = 𝑅 25 =10 kΩ MicLab – 09 – 2012.04.18. Mingesz Róbert

Termisztor Mérési tartomány: -90 °C ..130 °C Reakcióidő: néhány s Átmérő > 1,5 mm Ár > 100 Ft

Önfűtés Mérőáram: hőt termel: 𝑃=𝑈∙𝐼 Newton lehűlési törvény: 𝑃 𝑇 =𝐾( 𝑇 𝑅 − 𝑇 𝐾 ) Egyensúlyi állapot: 𝑇 𝐾 = 𝑇 𝑅 − 𝑈 2 𝐾∙ 𝑅 𝑇

PTC eszközök T nő → R nő Alkalmazások: Áram korlátozása (regenerálódó biztosíték) Hőmérsékletszabályozás

Thermoelem

Termoelem Seebeck-effektus: Termoelem (Réz-Konstantán vezetékek)

Termoelem Kis impedancia, kis feszültség: nagy erősítés szükséges Jó közelítéssel lineáris Átmérő > 1.5 mm Ár > 2000 Ft Mérési tartomány K típusú termoelem esetén: -200 °C .. +1350 °C

Termoelem - hidegpont Hidegpont kompenzálás

NI-9211 hidegpont-kompenzálás Termisztor

Integrált hőmérsékletszenzorok

IC hőmérsékletszenzorok LM35 Lineáris kimenet +2 °C - +150 °C

IC hőmérsékletszenzorok AD7414 Digitális kimenet 10 bit -40 °C - +125 °C

IC hőmérsékletszenzorok LM75 Digitális kimenet 9 bit -55 °C - +125 °C

Pirométerek Hőmérséklet → hősugárzás (általában infravörös) A sugárzás spektruma hőmérsékletfüggő → a hőmérséklet meghatározható Kontaktus nélküli mérés Mérési tartomány: -32 °C .. 3000 °C

Fény detektálása

Fény érzékelése Fény → hőmérsékletváltozás elektronok gerjesztése elektronok kilépése

Bolométer Hőhatás mérése (infravörös fény detektálása)

Fotóellenállás (light dependent resistor) Félvezető Fény → elektronok kerülnek át a vezetési sávba Hátrányok: lassú Előnyök: egyszerű alkalmazhatóság, ohmikus Spektrális érzékenység: típustól függ

Fotodióda Előnyök: gyors az áram arányos a fényintenzitással olcsó Érzékenység: szükség szerint optikai szűrővel módosítható

Fotodióda

Fotodióda

Fotótranzisztor Tranzisztor vezérlése: fény (bázisáram helyett) Nagyobb érzékenység/áram

CCD

Hőkamera

Ionizáló sugárzások érzékelése Működési elv: Elektronok gerjesztése (vezetés, fényhatás) Ionizáció Szcintillátor Geiger-Müller számláló

Pulzoximéter Pulzusszám Oxigén szaturáció

Köszönöm a figyelmet ... vége ...