Fullerének és szén nanocsövek előadás fizikus és vegyész hallgatóknak (2011 tavaszi félév – április 4.) Kürti Jenő Koltai János (helyettesítés) ELTE Biológiai Fizika Tanszék
C h = n·a 1 +m·a 2 ; pl. (n,m)=(6,3) 6 3 C h kiralitási („felcsavarási”) vektor
ELEKTROMOS TULAJDONSÁGOK
Félvezetők vagy fémesek n - m = 3q (q: egész): fémes n - m 3q (q: egész): félvezető
ZONE FOLDING METHOD („ZÓNAHAJTOGATÁS”)
TB Band Structure of 2D Graphene conduction band valence band K M zone folding ac zz (from McEuen’s website) || METAL: n-m = 3q
Contour plot of the electronic band structure of graphene. Eigenstates at the Fermi level are black; white marks energies far away from the Fermi level. The inset shows the valence (dark) and conduction (bright) band around the K points of the Brillouin zone. The two bands touch exactly at K in a single point. E ± (k) = γ 0 3 + 2cosk · a 1 + 2cosk · a 2 + 2cos k · (a 1 − a 2 ) tight binding (nearest neighbour) M K σ σ σ pzpz
tube axis
a) Allowed k lines of a nanotube in the Brillouin zone of graphene. b) Expanded view of the allowed wave vectors k around the K point of graphene. k is one allowed wave vector around the circumference of the tube; k z is continuous. The open dots are the points with k z = 0; they all correspond to the Γ point of the tube. K
K k·c = (k +k z )·c = k ·(n 1 ·a 1 + n 2 ·a 2 ) = 2π·q
k i ·a j = 2πδ ij k·c = k·(n 1 ·a 1 + n 2 ·a 2 ) = 2π·q k K ·c = 1/3 ·(k 1 – k 2 ) ·(n 1 ·a 1 + n 2 ·a 2 ) = 1/3 ·(n 1 – n 2 ) ·2π k K = 1/3 ·(k 1 – k 2 ) !!!
Van Hove szingularitás E
(17,0) cikk-cakk cső 2,4eV Félvezető
(18,0) cikk-cakk cső Fémes
(10,10) karosszék cső Fémes
(14,6) királis cső Félvezető
(16,1) királis cső Fémes
11 22 Kataura plot
(a) Kataura plot: transition energies of semiconducting (filled symbols) and metallic (open) nanotubes as a function of tube diameter. (Calculated from the Van-Hove singularities in the joint density of states within the third-order tight-binding approximation.) (b) Expanded view of the Kataura plot highlighting the systematics in (a). The optical transition energies follow roughly 1/d for semiconducting (black) and metallic nanotubes (grey). The V-shaped curves connect points from selected branches (2n+m = 22, 23 and 24). For each nanotube subband transition E ii it is indicated whether the ν = −1 or the +1 family is below or above the 1/d average trend. Squares (circles) are zigzag (armchair) nanotubes.
K M n=3i n=3i+1 x 1/d n mod 3 = 2n mod 3 = 0n mod 3 = 1 n=3i+2 triad structure of zigzag tubes (due to trigonal warping)
K trigonal warping
Lines of allowed k vectors for the three nanotube families on a contour plot of the electronic band structure of graphene (K point at center). (a) metallic nanotube belonging to the ν = 0 family (b) semiconducting −1 family tube (c) semiconducting +1 family tube Below the allowed lines the optical transition energies E ii are indicated. Note how E ii alternates between the left and the right of the K point in the two semiconducting tubes. The assumed chiral angle is 15◦ for all three tubes; the diameter was taken to be the same, i.e., the allowed lines do not correspond to realistic nanotubes.
Kis átmérőjű szén nanocsövek (görbületi effektusok)
MOTIVÁCIÓ Lehetővé vált kis átmérőjű nanocsövek előállítása: - HiPco ( 0.8 nm) - CoMocat ( 0.7 nm) - DWNTs, borsók (peapods) melegítésével ( 0.6 nm) - növesztés zeolit csatornákban ( 0.4 nm) FELMERÜLŐ KÉRDÉS: A KIS ÁTMÉRŐJŰ CSÖVEK TULAJDONSÁGAI (geometria, sávszerkezet, rezgési frekvenciák stb) KÖVETIK-E A NAGY ÁTMÉRŐJŰ CSÖVEKÉT? grafénból „zónahajtogatás”-sal NEM
M. J. Bronikowski et al., J. Vac. Sci. Technol. A 19, 1800 (2001) High-Pressure CO method (HiPco) diameter down to 0.7 nm
peapods double-walled carbon nanotubes heating S.Bandow et al., CPL 337, 48 (2001) inner tube diameter down to 0.5 nm
SWCNT in zeolite channel (AFI)(d SWCNT 0.4 nm) picture from Orest Dubay J.T.Ye, Z.M.Li, Z.K.Tang, R.Saito, PRB (2003) O Al or P
FIRST PRINCIPLES CALCULATIONS DFT: LDA plane wave basis set, cutoff: 400 eV G. Kresse et al Wien Budapest Lancaster
arrangement: tetragonal (hexagonal for test) distance between tubes: l = 0.6 nm (1.3 nm for test) hexa tetra
r1r1 r2r2 r3r3 11 22 33 bond lengths bond angles (4,2) d c 56 atoms building block
tube axis ideal hexagonal lattice
tube axis d increases c decreases
tube axis extra bond misalignment 11
GEOMETRY OPTIMIZATION
diameter
1/d vs 1/d 0 DFT optimized diameter 1/d 0 (nm -1 ) 1/d (nm -1 ). ZZ AC CH r 0 = nm
(d-d 0 )/d 0 vs 1/d 0 relative change 1/d 0 (nm -1 ) (d-d 0 )/d 0 (%). ZZ AC CH r 0 = nm (9,0) : 1.06 ± 0.01 %
(d-d 0 )/d 0 vs 1/d 0 relative change 1/d 0 (nm -1 ) (d-d 0 )/d 0 (%). ZZ AC CH r 0 = nm (9,0) : 1.06 ± 0.01 %
length of the unit cell
unit cell lengths vs 1/d 0 relative change 1/d 0 (nm -1 ) (c-c 0 )/c 0 (%). ZZ AC CH r 0 = nm ZZ triads (9,0) : ± 0.01 %
bond lengths
(r 1 -r 0 )/r 0 vs 1/d relative change 1/d (nm -1 ) (r 1 -r 0 )/r 0 (%). ZZ AC CH r 0 = nm ZZ triads (9,0) : ± %
(r 2 -r 0 )/r 0 vs 1/d relative change 1/d (nm -1 ) (r 2 -r 0 )/r 0 (%). ZZ AC CH r 0 = nm ZZ triads
bond angles
bond angle 1 vs 1/d 0 DFT optimized 1/d 0 (nm -1 ) 1 (deg). ZZ AC CH r 0 = nm
pyramidalization or rehybridization sp 2 sp 3 S.Niyogi et al., Acc. Chem. Res. 35, 1105 (2002)
pyramidalization angle P vs 1/d DFT optimized 1/d 0 (nm -1 ) P (deg) ZZ AC CH r 0 = nm C 60 : 11.6°
SÁVSZERKEZET
TB vs DFT sávszerkezet (10,10)
(6,5) - DFT
(20,0) zigzag chiral (19,0) (17,0) (16,0) (14,0) (13,0) (11,0) (10,0) (8,0) (7,0)(5,0)(4,0) (6,4) (6,2) (5,3) (6,1) (4,3) (5,1) (4,2) (3,2) ZF-TB DFT 1/d
ZF-TB: E g = 2.3 eV DFT: E g = 0 ! (5,0) királis cső fémes
(20,0) zigzag chiral (19,0) (17,0) (16,0) (14,0) (13,0) (11,0) (10,0) (8,0) (7,0)(5,0)(4,0) (6,4) (6,2) (5,3) (6,1) (4,3) (5,1) (4,2) (3,2) ZF-TB DFT 1/d
ZF-TB METALLIC non-armchair: zigzag, chiral kFkF k F k F - k F (d ) = f(1/d 2 ) K tube axis Másodlagos gap megjelenése
Másodlagos gap a (6,3) csőben
secondary gap in (7,1) 0.14 eV
Nagyobb átmérőn nincs ilyen
ZF-TB METALLIC armchair k F k F - k F (d ) = f(1/d 2 ) K kFkF tube axis Nincs másodlagos gap
(6,6) (4,4) k F (d )=2/3 kFkF kFkF FF FF
AC (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9) (10,10) (11,11)