Hőközlés – Alapfogalmak Hővezetés és hősugárzás Műszaki hőtan II. Hőközlés – Alapfogalmak Hővezetés és hősugárzás
Időben állandósult hővezetés. Bordák és rudak hővezetése
Hőellenállás Analóg a villamos ellenállással: 𝑒𝑙𝑙𝑒𝑛á𝑙𝑙á𝑠= ℎ𝑎𝑗𝑡ó𝑒𝑟ő á𝑟𝑎𝑚 𝑅 𝐻 = ∆𝑇 𝑄 Analóg a villamos ellenállással: Meghatározása különböző hőterjedési módokra (jelölések köv. dia): - hővezetés Furier-egyenlet: 𝑄 =−𝜆⋅𝐴⋅𝑔𝑟𝑎𝑑 𝑡 megoldva t(x)-re - síkfalra: 𝑡 2 − 𝑡 1 = 𝑄 ⋅ 𝛿 𝜆⋅𝐴 rendezve ∆𝑇 𝑄 = 𝛿 𝜆⋅𝐴 = 𝑅 𝑉,𝑠 - csőfalra: 𝑡 2 − 𝑡 1 = 𝑄 ⋅ 𝑙𝑛 𝑟 2 𝑟 1 2𝜋𝜆𝐿 rendezve ∆𝑇 𝑄 = 𝑙𝑛 𝑟 2 𝑟 1 2𝜋𝜆𝐿 = 𝑅 𝑉,𝑐𝑠 - gömbhéjra: 𝑡 2 − 𝑡 1 = 𝑄 ⋅ 1 𝑟 1 − 1 𝑟 2 4𝜋𝜆 rendezve ∆𝑇 𝑄 = 1 𝑟 1 − 1 𝑟 2 4𝜋𝜆 = 𝑅 𝑉,𝑔 - hőátadás: Newton egyenlet: 𝑄 =𝛼⋅𝐴⋅ 𝑡 𝑤 − 𝑡 ∞ rendezve ∆𝑇 𝑄 = 1 𝛼⋅𝐴 = 𝑅 𝐾
Vezetéses hőellenállás t(r) t(x) t(r)
Hőellenállás-hálózat Összetett hővezetéses rendszerek leképezése 𝑅 𝑡𝑜𝑡,𝑠𝑜𝑟𝑜𝑠 = 𝑖 𝑅 𝑖 𝑅 𝑡𝑜𝑡,𝑝á𝑟ℎ = 1 𝑖 1 𝑅 𝑖
Kontakt hőellenállás Nem tökéletesen érintkező felületek 𝑅 𝑘𝑜𝑛𝑡𝑎𝑘𝑡 = 𝑇 𝐴 − 𝑇 𝐵 𝑄 𝑘𝑜𝑛𝑡𝑎𝑘𝑡 = 𝛿 𝑟é𝑠 𝜆 𝑟é𝑠 ⋅𝐴
Hőellenállás összetett folyamatra (hőátadás – hővezetés - hőátadás) 𝑄 𝑥
Hőellenállás-hálózat (henger) Hengeres geometria leképezése hőellenállásokkal
Hőellenállás-hálózat (gömb) Gömbhéj geometria leképezése hőellenállásokkal Meleg közeg 𝑇 ∞,1 Hideg közeg 𝛼 1 𝑇 ∞,2 𝝀 𝛼 2 𝑇 ∞,1 𝑇 1 𝑇 2 𝑇 ∞,2 𝑟 2,𝑘𝑟𝑖𝑡 𝑎ℎ𝑜𝑙 𝑑 𝑅 𝑡𝑜𝑡 𝑑 𝑟 2 =0 1 𝑟 1 − 1 𝑟 2 4𝜋𝜆 1 4 𝑟 1 2 𝜋𝜆 1 4 𝑟 2 2 𝜋𝜆 Rtot= + +
Bordák és rudak hővezetése A borda alkalmazásának előnyei bordázatlan felület bordázott felület
A természet példái Stegosaurus
A természet példái Bordás krokodil
A természet példái Elefánt
Háztartási példa Füles csésze és kiskanál Lemezbordás radiátor
Műszaki gyakorlat apróbordás autóhűtő (hőcserélő) hőcsöves hagyományos
Bordák és rudak hővezetése Borda kialakítások és alkalmazások
Bordák és rudak hővezetése Borda alaptípusok
Bordák és rudak hővezetése A borda hőfokeloszlásának differenciálegyenlete
A borda hőfokeloszlásának differenciálegyenlete 𝑄′ 𝑄′′ 𝐴 𝐴 𝑝 𝑑 𝑄 𝑈 𝑑𝑥 𝐻 ∆𝑡 𝑥 ∆𝑡 ∆𝑡 𝑥=𝐻 𝑥 𝑑(∆𝑡) ∆𝑡 0 𝑄 𝑡𝑜𝑡 𝑄 0 𝑑 𝑄 𝑄 ′ =−𝜆⋅𝐴⋅ 𝑑 ∆𝑡 𝑑𝑥 ahol Δt a borda túlhőmérséklete hőm. megváltozása a dx szakaszon: ∆𝑡+ 𝑑(∆𝑡) 𝑑𝑥 ∙𝑑𝑥 ezzel a távozó hőáram: 𝑄 ′′ =−𝜆⋅𝐴⋅ 𝑑 𝑑𝑥 ∆𝑡+ 𝑑 ∆𝑡 𝑑𝑥 ∙𝑑𝑥 =−𝜆⋅𝐴⋅ 𝑑 ∆𝑡 𝑑𝑥 −𝜆⋅𝐴⋅ 𝑑 2 ∆𝑡 𝑑 𝑥 2 ∙𝑑𝑥 Paláston leadott hőáram: 𝑑 𝑄 = 𝑄 ′ − 𝑄 ′′
A borda hőfokeloszlásának differenciálegyenlete Paláston leadott hőáram: 𝑑 𝑄 = 𝑄 ′ − 𝑄 ′′ =−𝜆⋅𝐴⋅ 𝑑 ∆𝑡 𝑑𝑥 +𝜆⋅𝐴⋅ 𝑑 ∆𝑡 𝑑𝑥 +𝜆⋅𝐴⋅ 𝑑 2 ∆𝑡 𝑑 𝑥 2 ∙𝑑𝑥 vagy 𝑑 𝑄 =𝛼∙ 𝐴 𝑝 ∙∆𝑡= 𝛼∙𝑈⋅𝑑𝑥∙∆𝑡 ahol 𝐴 𝑝 =𝑈⋅𝑑𝑥 𝛼∙𝑈⋅𝑑𝑥∙∆𝑡=𝜆⋅𝐴⋅ 𝑑 2 ∆𝑡 𝑑 𝑥 2 ∙𝑑𝑥 rendezve: 𝑚= 𝛼∙𝑈 𝜆⋅𝐴 𝛼∙𝑈 𝜆⋅𝐴 ⋅∆𝑡= 𝑑 2 ∆𝑡 𝑑 𝑥 2 bevezetve: 𝑚 2 ⋅∆𝑡= 𝑑 2 ∆𝑡 𝑑 𝑥 2 ∆𝑡= 𝐶 1 ∙𝑒 𝑚𝑥 +𝐶 2 ∙ 𝑒 −𝑚𝑥 Általános megoldás:
Bordák és rudak hővezetése A borda hőfokeloszlásának peremfeltételei
Az állandó keresztmetszetű rúd- és lemezbordák hőfokeloszlása és hőárama (segédlet)
Bordák és rudak hővezetése Jelleggzetes bordakialakítások
Időben változó hővezetés
Időben változó hővezetés Hővezetés általános differenciálegyenlete
Időben változó hővezetés A hővezetés általános differenciálegyenlete Entalpiaváltozás: Hőáram különbözetek: 𝑑𝐻 𝑑𝜏 = 𝑐 𝑝 ∙𝑚∙𝜕𝑡= 𝑐 𝑝 ∙𝜌∙𝑑𝑉∙𝜕𝑡= 𝑐 𝑝 ∙𝜌∙𝑑𝑥∙𝑑𝑥∙𝑑𝑧∙𝜕𝑡
Időben változó hővezetés Az energiamérleg differenciális formában: A hővezetés általános differenciálegyenletének koordináta rdsz-től független alakja: 𝑑𝑥𝑑𝑦𝑑𝑧=𝑑𝑉 és egyike sem zérus, továbbá ha 𝜆 független a hőmérséklettől: 𝑞 𝑉 +𝜆 𝜕 2 𝑡 𝜕𝑥 2 + 𝜕 2 𝑡 𝜕𝑦 2 + 𝜕 2 𝑡 𝜕𝑧 2 =𝜌𝑐 𝜕𝑡 𝜕𝜏 továbbá bevezetve: 𝑎= 𝜆 𝜌𝑐 𝑞 𝑉 𝜌𝑐 +𝑎 𝜕 2 𝑡 𝜕𝑥 2 + 𝜕 2 𝑡 𝜕𝑦 2 + 𝜕 2 𝑡 𝜕𝑧 2 = 𝜕𝑡 𝜕𝜏
Időben változó hővezetés Peremfeltételek Dirichlet-féle Neumann-féle konvektív
Időben változó hővezetés További peremfeltételek adiabatikus (szigetelt) felszín konvekció és sugárzás együttese hősugárzás érintkező szilárd felületek …
Időben változó hővezetés Hőmérsékleteloszlás különböző peremfeltételek mellett koncentrált paraméterű kezelés (Bi<0,1)
Időben változó hővezetés Hasonlóság feltételei: a leíró differenciálegyenletek dimenziótlan alakja azonos geometriai körülmények hasonlóak, egyszerű geometriai transzformációval azonossá tehetők a geometriák kezdeti feltételek dimenziótlan alakja azonos peremfeltételek dimenziótlan alakja azonos
Időben változó hővezetés Dimenziótlanítás dimenziótlanítás Hasonlóságot biztosító mennyiségek
Időben változó hővezetés Megoldás szorzat szeparációs módszerrel Figyeljük a táblát!
Időben változó hővezetés Sík fal lehűlése – harmadfajú peremfelt.
Időben változó hővezetés Dimenziótlan megoldás Heisler diagram (sík fal, közép) Első közzététel: M. P. Heisler, Transactions ASME, 69, 227-236, 1947
Időben változó hővezetés Kiegészítő diagramok hely szerinti korrekció leadott, ill. felvett hő
Véges kiterjedésű testek Téglatest Henger