A szín fogalma A „szín” fogalmát kiegészítés nélkül ne használjuk! - inger vagy észlelet színészlelet - pszichológiai fogalom színinger - pszichofizikai.

Slides:



Advertisements
Hasonló előadás
Az optikai sugárzás Fogalom meghatározások
Advertisements

Radiometria, fotometria, színmérés
Fénytan és a vakuk. A színhőmérséklet  Fény= energia  Fehér fény különböző színű fények keveréke  Fényforrás valós színe ~ hullámhossz szerinti eloszlás.
A SZÍNES TELEVÍZIÓ SZÍNMÉRŐ RENDSZERE
Színformátumok és színmodellek
Hősugárzás Gépszerkezettan és Mechanika Tanszék.
Színekről világítástechnikusoknak
A színek számítógépes ábrázolásának elve
A színinger mérése.
2D-3D számítógépes grafika
2D-3D számítógépes grafika
Árnyalás – a felületi pontok színe A tárgyak felületi pontjainak színezése A fényviszonyok szerint.
Az emberi látás Segédanyag a Villamosmérnöki Szak
3D képszintézis fizikai alapmodellje
Digitális képanalízis
2D-3D számítógépes grafika
BME Építészmérnöki Kar Építészeti Ábrázolás Tanszék
2D-3D számítógépes grafika
A színmérés és a színinger-mérő rendszer fontosabb modelljei
SZÍNEKRŐL.
SZÍNEKRŐL.
Hősugárzás.
Hősugárzás Radványi Mihály.
Tematika Optikai sugárzás tartománya és hatásai
Hang, fény jellemzők mérése
Színes világban élünk.
A színészlelés fiziológiai alapjai
A színészleletet jobban közelítő színrendszer megalkotásának lehetőségei Schanda János Pannon Egyetem.
Veszprém, Számítógépes megjelenítő és képalkotó eszközök kalibrációja Csuti Péter - Dr. Samu Krisztián.
Mérőműszerek felépítése, jellemzői
Radiometria, fotometria, színmérés
Katódsugárcsöves képmegjelenítő
Szín management szín(észlelet)helyes leképezés különböző mediumokban.
Színrendszerek és szín-atlaszok
Radiometria, fotometria, színmérés
A MacAdam-ellipszisek a CIE-xy diagramban.
Színmegjelenési modellek
Színtervezés számítógépes felhasználás számára Schanda János és a Virtuális Környezetek és Fénytan Laboratórium Dolgozói és PhD hallgatói.
Radiometriai, fotometriai és színmérési műszerek és mérések
Schanda János Virtuális Környezet és Fénytani Laboratórium
Radiometria, fotometria, színmérés
Színtervezés számítógépes felhasználás számára Schanda János és a Virtuális Környezetek és Fénytan Laboratórium Dolgozói és PhD hallgatói.
VTT-BudapestSchanda János VE-Professzor Emeritus – CIE-MNB Színészlelet és „lágy” metrológia CIE TC 1-65:A framework for the measurement of visual appearance.
Színek Harkai Richárd Free Powerpoint Templates.
2. tétel.
Alapfogalmak III. Sugárzástechnikai fogalmak folytatása
Színek.
Világosság és fénysűrűség ajánlások a mezopos fénysűrűség értékelésére
Monitorok.
2D-3D számítógépes grafika
3D képszintézis fizikai alapmodellje Szirmay-Kalos László Science is either physics or stamp collecting. Rutherford.
Fogszín meghatározás 2008.
Árnyalás – a felületi pontok színe A tárgyak felületi pontjainak színezése A fényviszonyok szerint.
Color Management I. színelmélet Lengyel Zsolt – Multimédia alapjai.
Árnyalás – a felületi pontok színe A tárgyak felületi pontjainak színezése A fényviszonyok szerint.
Természetes világítás
A fényhullámok terjedése vákuumban és anyagi közegekben
Alapfogalmak BME-VIK.
LCD kijelzők működése és típusai
Lámpák fizikai-kémiája Pajkossy Tamás MTA KK Anyag- és Környezetkémiai Intézet 1025 Budapest II., Pusztaszeri út
Világítás tervezése excelben Hangolható LED-es világítás.
II. rész Anyagok fénytechnikai tulajdonságai; fényeloszlás, Lambert törvény fénysűrűségi tényező; belsőtéri világítás méretezése manuális számításokkal,
6. A 3D grafika alapjai 6.1. A 3D szerelőszalag fölépítése 6.2. Térbeli alakzatok képe 6.3. Térbeli képelemek és modell-adatszerkezetek 6.4. Képelemek.
Batta Imre: 2D-3D számítógépes grafika / 0 2D-3D számítógépes grafika Színmérés BME Építészmérnöki Kar Építészeti Ábrázolás Tanszék Batta Imre DLA.
A színes képek ábrázolása. A szín A szín egy érzet, amely az agy reakciója a fényre. Az elektromágneses sugárzás emberi szem által látható tartományba.
Hősugárzás.
Alapfogalmak folytatás Színhőmérséklet és színvisszaadás ellenőrzése
2D-3D számítógépes grafika
Színelmélet Kalló Bernát KABRABI.ELTE.
RASZTERES ADATFORRÁSOK A távérzékelés alapjai
Előadás másolata:

A szín fogalma A „szín” fogalmát kiegészítés nélkül ne használjuk! - inger vagy észlelet színészlelet - pszichológiai fogalom színinger - pszichofizikai fogalom radiometria - fizikai fogalom fotometria - a színinger egyik dimenziója

Színmérés A szín észlelet, agyunkban keletkezik számszerű leírás: színinger, mely az észleletet kiváltja színinger-megfeleltetés színinger keltés: additív színkeverés : monitor szubtraktív színkeverés: színes film, nyomtató

Additív szubtraktív színkeverés

Az additív színmegfeleltetés alapkísérlete

Additív színingerkeverés Additivitás: Ha C1R1(R)+G1(G)+B1(B) C2R2(R)+G2(G)+B2(B) akkor CR(R)+G(G)+B(B), ahol R= R1+ R2, G= G1+ G2, B= B1+ B2,

Additív színingerkeverés Proporcionalitás Ha C1R1(R)+G1(G)+B1(B) akkor aC1aR1(R)+aG1(G)+aB1(B)

Additív színkeverés - Grassmann törvények Minden színinger létrehozható 3 egymástól független színinger additív keverékeként. A függetlenség alatt azt értjük, hogy a három színinger közül egyik sem hozható létre a másik kettő additív keverékeként. Színegyezés létrehozásához csak a választott alapszíninger a lényeges, a színképi összetétele nem. Az egyes színingerek erősségének folyamatos változtatásának hatására az eredő színinger is folyamatosan változik.

Színinger-összetevők vagy tristimulusos értékek

Színinger-megfeleltető függvények (colour matching functions)

CIE 1931 színingermérő rendszer

CIE XYZ színinger összetevők önvilágítók (monitor): k = 683 lm/W

CIE XYZ trirtimulusos érték (színinger-összetevők), önvilágítók (fényforrások) a színinger-megfeleltető függvények Az y függvény azonos a V(l) függvénnyel, k = 683 lm/W

szín(inger-) vagy színességi koordináták

Szín(inger-) vagy színességi diagram R, G, B: katódsugár-csöves monitor alap-színingerei Planck sugárzók vonala

A színes-ségi dia-gram színes ábrája

Másodlagos sugárzók (nem önvilágítók) színmérése ahol S(l) a megvilágító sugárforrás színképi teljesítményeloszlása r(l) a minta spektrális reflexiója

Szabványos sugárzáseloszlások és fényforrások CIE A sugárzáseloszlás CIE D65 sugárzáseloszlás további napplai sugárzáseloszlások, grafikus iparban: D50 CIE A fényforrás CIE D65 szimulátor

CIE A- és D65 sugárzáseloszlás színképe

CIE 1931 és 1964 színingermérő rendszer 2°-os látószög: CIE 1931 10°-os látószög: CIE 1964 X10(), Y10(), Z10() színinger összetevők számítása

CIE 1931 és 1964 szabványos színingermérő észlelők

MacAdam ellipszisek The CIE x,y diagram színinger-megkülön-böztetési ellipszisek-kel

Egyenletes színességi skálájú diagram u' = 4X / (X+15Y+3Z) = 4x / (-2x+12y+3) v' = 9Y / (X+15Y+3Z) = 9y / (-2x+12y+3) u = u' , v = (2/3)v' CIE 1976 u,v színezeti szög: huv = arctg[(v' - v'n) / (u' - u'n)] = v* / u* CIE 1976 u,v telítettség: suv = 13[(u' - u'n)2 + (v' - v'n)2]1/2

u’,v’ színességi diagram

Különböző hőmérséklet fogalmak Valódi hőmérséklet Sugárzási hőmérséklet Eloszlási hőmérséklet színhőmérséklet Korrelált színhőmérséklet

Fényforrások színi jellemzése Fény(forrás) színinger-mérése színhőmérséklet korrelált színhőmérséklet Színvisszaadás Az észlelt felület-szín függ a megvilágító színképi teljesítményeloszlásától színi áthangolódás: von Kries törvény, Bradford transzformáció, leírás az észleletet követő színrendszerben

A színmetrika további kérdései CIE 1931 és 1964 színingermérő rendszer metameria egyenlőközű színterek színatlaszok színmegjelenési modellek színvisszaadás

Korrelált színhőmérséklet Azonos korrelált színhőmérsékletű vonalak (az u,v-diagramban merőlegesek a Planck görbére)

ISO-temperature lines in u,v diagram

Színi áthangolódás - 1

Von Kries színi áthangolódási törvény Fiziológiai alapszíninger-rendszerben dolgozunk Ahhoz, hogy az adott megvilágító (Rw, Gw, Bw) esetén az R, G, B-vel jellemzett szín a referencia megvilágító (Rrw, Grw, Brw) alatt ugyanolyan színészleletet hozzon létre a minta jellemzői a referencia megvilágító esetén Rr, Gr, Br a következőképen számítandók: Rr=(Rrw/ Rw)*R, Gr=(Grw/Gw)*G, Br=(Brw/Bw)*B

Két sugárzó színképe, melyek színingerpontja azonos Spetrális teljesítményeloszlás 180 160 140 120 rel. teljesítmény 100 80 60 40 20 350 400 450 500 550 600 650 700 750 800 850 900 hullámhossz, nm

A két sugárzó színpontja és a velük megvilágított minta színpontjai

Színvisszaadási index Minták színmegjelenése összehasonlítva ideális fényforrással történő megvilágítás alatt látható színmegjelenéssel Ideális fényforrás, a vizsgálandóval azonos korrelált színhőpmérsékletű: 5000 K alatt: Planck sugárzó 5000 K felett nappali (Daylight) sugárzáseloszlás Minták: 8 + 5 Munsell színminta von Kries színi áthangolódás Színinger-különbség U*,V*,W* térben Ri =100-DEi, Ra = S(Ri )/8, i= 1 ... 8

A színvisszaadás számítás folyamatábrája Ref. illuminant Test source Equal CCT test source U*V*W* transf. Test smpls. illum. test smpl. CIE XYZ ref. illum. Colour CRI diff. CRA Chrom. adapt.

Színinger-megfeleltetés R =  SR()   G =  SG()   B =  SB()  

Additív színegyeztetés Fennáll a disztributivitás, additivitás és proporcionalitás törvénye Összehasonlító színingerek: vörös: 700 nm zöld: 546 nm kék: 435 nm

Alapszínek R = 1 lm 700 nm vörös, G = 4,5907 lm 546,1 nm zöld B = 0,0601 lm 435,8 nm kék

CIE A sugárzáseloszlás ahol: c0 = 299792458 +/- 1,2 m/s

Lambert cosinus törvény

Lambert sugárzó fénysűrűsége független a ,  szögtől mivel a gömb felületén: dA2 = R sin  R d és az elemi térszög: d = sin  d d a vetített térszög pedig: dp = sin  d d cos  A féltérbe kisugárzott össz-fényáram: M =  / dA

A féltérbe kisugárzott fényáram: Lambert sugárzó esetén: