Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

GPGPU labor IX. Lineáris egyenletrendszerek megoldása.

Hasonló előadás


Az előadások a következő témára: "GPGPU labor IX. Lineáris egyenletrendszerek megoldása."— Előadás másolata:

1 GPGPU labor IX. Lineáris egyenletrendszerek megoldása

2 Kezdeti teendők Tantárgy honlapja, Lineáris egyenletrendszerek A labor kiindulási alapjának letöltése (lab9_base.zip), kitömörítés a GPGPU\Labs könyvtárba

3 Gauss-Jordan elimináció // TODO // // ID := get_local_id(0) // // LOOP ma := 0.. m DO: // pivot := A[ma + ma * n] // coeff := A[ma + ID * n] / pivot // BARRIER // IF ID != ma DO: // LOOP na := 0.. n DO: // A[na + id * n] := A[na + id * n] - coeff * A[na + n * ma]; // ENDIF // BARRIER // END LOOP // // coeff := A[ID + ID * n] // LOOP na := 0.. n DO: // A[na + id * n] = A[na + id * n] / coeff __kernel void gaussian(const int n, const int m, __global float* A){ }

4 Minta egyenletrendszer int n = 4; int m = 3; float A[] = {2, 1, -1, 8, -3, -1, 2, -11, -2, 1, 2, -3};

5 Mátrix invertálás int n = 6; int m = 3; float A[] = { 2, -1, 0, 1, 0, 0, -1, 2, -1, 0, 1, 0, 0, -1, 2, 0, 0, 1};

6 Mátrix vektor szorzás CPU implementáció void scalarMV(int n, int m, float* y, const float* A, const float* x, const float* b){ for(int i=0; i

7 Mátrix vektor szorzás GPU implementáció I // TODO // // i := get_global_id(0) // // IF ID < n DO: // yi := b[i] // LOOP j := 0.. m DO: // yi += A[j + i * m] * x[j] // END LOOP // y[i] := yi // END IF __kernel void simpleMV(const int n, const int m, __global float* y, __global float* A, __global float* x, __global float* b){ }

8 Mátrix vektor szorzás GPU implementáció II // TODO // // i = get_group_id(0) // j = get_local_id(0) // // Q[j] := A[i * M + j] * x[j] // BARRIER // // Sum scan on Q (reduction) // // IF j = 0 THEN: // y[i] = Q[0] + b[i] // __kernel void reduceMV(const int n, __global float* y, __global float* A, __global float* x, __global float* b, const int M, __local float* Q){ }

9 Mátrix vektor szorzás GPU implementáció III // TODO // // t := get_local_id(0) / Z // z := get_local_id(0) % Z // // FOR i := t ; i < n ; i := i + T : // Q[t * Z + z] = 0 // FOR j := z ; j < m ; j += Z : // Q[t * Z + z] += A[j + i * m] * x[j] // END FOR // // Sum scan on Q (reduction) // // IF z = 0 THEN: // y[i] = Q[t * Z + 0] + b[i] // __kernel void largeMV(const int n, const int m, __global float* y, __global float* A, __global float* x, __global float* b, const int T, const int Z, __local float* Q){ }

10 Mátrix vektor szorzás Terjesszük valamely megoldást több munkacsoportra!

11 Jacobi iteráció void jacobi(){ int n = 8; float* x[2] = {NULL, NULL}; x[0] = new float[n]; x[1] = new float[n]; for(int i = 0; i < n; ++i){ x[0][i] = 0.0f; x[1][i] = 0.0f; } float* A = new float[n * n]; for(int i = 0; i < n; ++i){ for(int j = 0; j < n; ++j){ float v = 0.0f; if( i == j){ v = 0.5f; } A[i + j * n] = v; } float* b = new float[n]; for(int i = 0; i < n; ++i){ b[i] = 1.0f; } int inputBuffer = 0; const int iterations = 20; for(int i = 0; i < iterations; ++i){ largeMV(n, n, x[(inputBuffer + 1) % 2], A, x[inputBuffer], b); inputBuffer = (inputBuffer + 1) % 2; printResult(n, x[inputBuffer], "Jakobi"); } delete x[0]; delete x[1]; delete A; delete b; }

12 Jacobi iteráció Próbáljuk ki más egyenlet rendszerre is! Próbáljuk ki, hogy mi történik, ha nem megoldható az egyenlet rendszer!


Letölteni ppt "GPGPU labor IX. Lineáris egyenletrendszerek megoldása."

Hasonló előadás


Google Hirdetések