Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Matematika feladatlap a 8. évfolyamosok számára 2007. január 27. M-1 feladatlap.

Hasonló előadás


Az előadások a következő témára: "Matematika feladatlap a 8. évfolyamosok számára 2007. január 27. M-1 feladatlap."— Előadás másolata:

1 Matematika feladatlap a 8. évfolyamosok számára január 27. M-1 feladatlap

2 1. Határozd meg a p, q és r értékét, ha p = a legkisebb kétjegyű négyzetszám q = −2 − (− 3)− (− 4) r = p = ………. q = ………. r = ………. Számítsd ki az s = ………. Megoldás: a) p = 16 1 pont b) q = 5 1 pont c) r = −10 1 pont d) s = 0 2 pont A d) rész 2 pontja akkor is jár, ha rossz p, q vagy r értéket kapott, de ezekkel helyesen számolt a behelyettesítésnél.

3 2. Két háromszög határvonalának különböző számú közös pontja lehet. Minden lehetséges esetet szemléltess egy-egy ábrával! A megadott három példához hasonlóan egészítsd ki az ábrákat a megfelelően elhelyezett háromszögekkel!

4 Megoldás: a)Minden megfelelő helyen jól megrajzolt esetért 1-1 pont jár. legfeljebb 5 pont

5 3. Az 1: méretarányú térképen Kecskemét és Szeged távolsága 15 cm hosszú szakasz. Legyen a valódi távolság x, ekkor 15 : x = 1 : a) A helyes arány tetszőleges alakú jó felírása 1 pont Hány kilométerre van a két város egymástól légvonalban? Írd le a megoldás menetét is! b) 75 2 pont Ugyanezen a térképen hány cm-nek mérhető a Győr-Budapest közötti 105 km-es távolság? c) 21-nek 2 pont Ha a helyes arányt tetszőleges alakban jól felírja, de számolási hibát követ el, akkor a c) részre 1 pontot kap.

6 4. Egy levelező matematikaverseny első fordulóján 50 diák vett részt. Összesen hat feladatot kellett megoldaniuk. Az egyes feladatokra érkezett megoldások számát az alábbi grafikon mutatja. a) Melyik feladatra érkezett a harmadik legtöbb megoldás? a 6.-ra 1 pont b) Az 1. feladatra hányan nem küldtek megoldást a résztvevők közül? 12 fő 1 pont c) Mennyivel többen küldtek megoldást a 2. feladatra, mint az 5. feladatra? 16-tal 1 pont d) Mennyi az utolsó három feladatra beküldött megoldások számának átlaga? Az átlag kiszámítási módja. 1 pont e) átlag: 24 1 pont Ha az átlag helyes, és nem írta fel a törtet, akkor is jár a d) rész 1 pontja.

7 5. Zsófi gondolt egy számot. Levont belőle 22-t, és az eredményt leírta egy lapra, amit átadott Gábornak. Gábor elosztotta a lapon lévő számot hárommal, és az eredményt leírta egy új lapra, amit odaadott Líviának. Lívia hozzáadott a lapon lévő számhoz 15-öt, és az eredményt leírta egy újabb lapra, amit átadott Júliának. Júlia a kapott számot megszorozta kettővel, és éppen 100-at kapott eredményül. a) Lívia melyik számot írta a lapra? 50-et 1 pont b) Gábor melyik számot írta a lapra? 35-öt 1 pont c) Melyik számra gondolt Zsófi? 127-re (Ha csak az egyik műveletet hajtja végre, 1 pont adható.) 2 pont Ha hibás részeredménnyel helyesen számol tovább, akkor járnak a további pontok.

8 6. Az ábrán látható ABCD derékszögű trapézban a hosszabb szár és a hosszabb alap egyaránt 8 cm hosszú, a DAC szög 30°- os. Írd be az ismert adatokat az ábrába! Határozd meg a γ és a β szög nagyságát, valamint a DC oldal hosszát! γ = β = DC =

9 6. Az ábrán látható ABCD derékszögű trapézban a hosszabb szár és a hosszabb alap egyaránt 8 cm hosszú, a DAC szög 30°- os. Írd be az ismert adatokat az ábrába! Határozd meg a γ és a β szög nagyságát, valamint a DC oldal hosszát! Megoldás: a) A 30° jó helyre írása. 1 pont b) A 8 cm mindkét helyre történt beírása. 1 pont c) γ = 60° 1 pont d) β = 60° 1 pont e) DC = 4 cm 1 pont

10 7. Leírtuk egymás mellé a számjegyeket úgy, hogy minden számjegyet éppen annyiszor írtunk le, amennyi a számjegy értéke: a) Hány számjegyet írtunk le összesen? 45-öt 1 pont b) Melyik számjegy áll balról a 25. helyen? 7 1 pont c) Ha az összes leírt számjegyet összeszoroznánk, akkor a szorzat hány darab 0-ra végződne? 5 2 pont

11 8. Tegyél ∗ jelet a táblázat megfelelő rovataiba!

12 Minden helyes megoldásért 1-1 pont jár.

13 9. Egy 2 cm élhosszúságú tömör kockának az egyik sarkából kivágtunk egy 1 cm élhosszúságú kockát. a)A keletkezett testnek hány éle van? 21 2 pont b) A keletkezett testnek hány lapja van? 9 1 pont c) Hány cm 3 a keletkezett test térfogata? 7 1 pont d) Hány cm 2 a keletkezett test felszíne? 24 2 pont

14 10. A festéküzletben színskála alapján keverik a festékeket. Egy alkalommal 40% fehér, 25% kék és 35% sárga festékből zöld színű festéket állítottak elő. a)Hány liter kék festék szükséges 16 liter zöld festék elkészítéséhez? 4 1 pont b) Hány liter zöld festék keverhető 8 liter fehér festék felhasználásával? Egy másik alkalommal a fehér, a kék és a sárga festéket 9 : 6 : 5 arányban keverték pont c) Hány százalék kék festéket tartalmaz ez a keverék? 30% 2 pont d) Hány liter sárga festék van 32 liter ilyen arányú keverékben? 8 2 pont


Letölteni ppt "Matematika feladatlap a 8. évfolyamosok számára 2007. január 27. M-1 feladatlap."

Hasonló előadás


Google Hirdetések