Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Mintavételi hiba, hibaszámítás. Hibatípusok Véletlen hiba: A mérési eredmények a valóságos értéktől mindkét irányban azonos valószínűséggel, véletlenszerűen.

Hasonló előadás


Az előadások a következő témára: "Mintavételi hiba, hibaszámítás. Hibatípusok Véletlen hiba: A mérési eredmények a valóságos értéktől mindkét irányban azonos valószínűséggel, véletlenszerűen."— Előadás másolata:

1 Mintavételi hiba, hibaszámítás

2 Hibatípusok Véletlen hiba: A mérési eredmények a valóságos értéktől mindkét irányban azonos valószínűséggel, véletlenszerűen térnek el. Nagy számú mérés átlagát véve a véletlen hiba tetszőlegesen csökkenthető. Rendszeres (szisztematikus) hiba: A mérési eredmények a valóságos értéktől eltérő érték körül ingadoznak. Sokféle oka lehet, pl: Nem megfelelő mintavétel, Hibás vagy rosszul beállított műszer, Analitikai (módszertani) probléma, Figyelmen kívül hagyott, a mérést befolyásoló külső tényező (pl. hőmérséklet hatása).

3  A monitoring célja az, hogy megalapozza a vízstátus egységes és átfogó felülvizsgálatát minden egyes vízgyűjtőkerületben és elősegítse a felszíni víztestek besorolását a megfelelő osztályba.  Mérlegelni kell a monitoring költségét és a státus hibás besorolásának következményéből származó költségeket (többlet intézkedések).  A vízgyűjtő gazdálkodási tervekben a konfidencia szinteket közölni kell. MONITORING - VKI

4 Kockázat A kedvezőtlen esemény bekövetkezésének esélye, VKI értelmezésében a hibás osztály besorolás valószínűsége. Az elfogadható kockázati szint befolyásolja a víztest állapotának meghatározásához szükséges monitoring időbeli és térbeli sűrűségét. Megbízhatóság (konfidencia) Annak a valószínűsége ( %-ban kifejezve), hogy a statisztikai paraméter valós értéke a számított és a jegyzett értékek közé esik (statisztikai bizonytalanság). Precizitás (pontosság) A valós állapot és a monitoring által talált állapot közti eltérés, adott konfidencia-tartomány szélességének felével megegyező statisztikai bizonytalanság mértéke.

5 A víztest állapota hibás osztályozásának kockázata (osztályozás megbízhatósága)

6 Valószínűségi sűrűségfüggvény: f(x) Annak valószínűsége, hogy egy érték x 1 és x 2 közé essen: A valószínűségi sűrűségfüggvény integrálja a valószínűségi változó teljes értelmezési tartományára: Valószínűségi eloszlásfüggvény: a valószínűségi sűrűségfüggvény integrálfüggvénye: F(x) Annak a valószínűsége, hogy a valószínűségi változó értéke nem nagyobb, mint egy adott x i érték: Hibaszámítás elmélete (valószínűségelmélet) Mintavétel, mérésvalószínűségi változóvalószínűségi sűrűségfüggvény P (x  x i ) = F(x i ) Az eloszlásfüggvénnyel megadhatjuk annak a valószínűségét, hogy a valószínűségi változó értéke x 1 és x 2 közé esik:

7 Normális eloszlás: azok a valószínűségi változók, melyek értékét sok kismértékű véletlenszerű hatás befolyásolja. Gauss-függvény: „m” az eloszlás várható értéke, „s” a szórás normalizált Gauss-függvény: u = (x-m) / s A normalizált Gauss-eloszláshoz tartozó valószínűségi eloszlásfüggvény: (hibaintegrál), F(  )=1. A normalizált Gauss-függvény (hibafüggvény):

8 x 1 = m-Δx és x 2 = m+ Δx Alkalmazás: Milyen valószínűséggel esik a valószínűségi változó értéke a várható érték körüli, adott sugarú intervallumba? u 1 = - Δ x/s = -v és u 2 = Δ x/s = v Transzformálás után (normalizált Gauss eloszláshoz) az intervallum: P(u 1  u  u 2 ) = F(u 2 ) - F(u 1 ) =  (v) -  (-v) Szimmetria miatt:  (-v) = 1 -  (u) P(-v  u  v) = 2  (v) - 1 Annak a valószínűsége, hogy a változó értéke kiessen az adott szimmetrikus intervallumból, tehát egy adott tűrésnél jobban eltérjen a várható értéktől: P(u  -v u  v) = 1- (2  (v)-1) = 2(1-  (v)). u = (x-m) / s

9 Gauss-eloszlás → a mérési eredmények a várható érték körüli s sugarú intervallumba 68,3%, a 2 s sugarú intervallumba 95,4 % valószínűséggel esnek. Adott P valószínűség (P konfidencia szint) : [m - k s, m + k s ] Konfidencia intervallum, melybe a mérési eredmények az adott P valószínűséggel beleesnek. P = 68,3%k = 1 P = 95,4%k = 2 P = 90%k = 1.65 P = 95%k = 1.96 Konfidencia intervallum, megbízhatósági szint megadása u = S = 1  (u) = P (-1 ≤ x ≤ 1) =  (1) – (1 –  (1))= 2  (1) -1 = 0.683

10 A mérési eredmények korrigált tapasztalati szórása és a középérték tapasztalati szórása („standard deviation”): Torzítatlan becslés varianciáját becsülhetjük az egyes mérések hibanégyzetének átlagával : Torzított becslésnél a variancia n-szeresének becsült értéke a valóságos variancia (n-1)-szerese: Variancia és szórás meghatározása Azaz a variancia becslése a mérési eredményekből: Mivel a középérték varianciája az egyes mérések varianciájának n-ed része

11 A középérték eloszlásának tulajdonságai

12 A hiba meghatározása a matematikai statisztika módszereivel A centrális határeloszlás tétele szerint bármilyen eloszlású sokaság esetén az n elemű minta számtani középértékének eloszlása a minta elemszámának növekedésével egy olyan normális eloszláshoz tart, melynek várható értéke megegyezik az eredeti eloszlás várható értékével. Ez azt jelenti, hogy ha már egyetlen mérési eredmény is átlagnak, pl. időátlagnak tekinthető, akkor várható, hogy az Gauss-eloszlású lesz. A mérési eredmények viszont nagyon gyakran ilyen átlagértékek. A gyakorlatban legtöbbször normális eloszlású mérési eredményekkel találkozunk.

13 A Zala és a Tetves-patak éves átlagos összes P terhelésének becslésében elkövetett relatív hiba Monte Carlo szimulációból nyert empirikus eloszlása (N=365, n=12) Példa: adatsorok ritkítása → becslés hibájának eloszlása: A vízhozamok általában erősen, a vízminőségi változók komponenstől függően különböző mértékben mutatnak pozitív ferdülést, leggyakrabban lognormál eloszlásúak. Tesztelés: Monte Carlo szimulációval

14 Mérési eredményeknél: a szórást sem ismerjük, csak becsüljük a középérték korrigált tapasztalati szórásával. Szórás is pontatlan → ugyanahhoz a valószínűséghez nagyobb számmal kell megszorozni a becsült szórást a konfidencia intervallum meghatározásánál, mint ezt egy ismert szórású Gauss-eloszlásnál tennénk. A t paraméter meghatározása (Student-féle t-eloszlás) A Student-féle t paraméter értékei P konfidenciaszintnél és N mérésszámnál 0,80,90,950,9750,990,995 23,0786,31412,70625,45263,657127,32 31,8862,9204,3036,2059,92514,089 41,6382,3533,1824,1765,8417,453 51,5532,1322,7763,4954,6045,598 61,4762,0152,5713,1634,0324,773 71,4401,9432,4472,9693,7074,317 81,4151,8952,3652,8413,4994,029 91,3971,8602,3062,7523,3553, ,3831,8332,2622,6853,2503, ,3281,7292,0932,4332,8613,174  1,2821,6451,9602,2412,5762,807 X (mért mennyiség) = =  t

15 Összefoglalva: N - elemű adatsor n - statisztikai minta α- „N” elemű idősor középérték relatív hibája, ha azt „n” mérésből becsüljük (Normál eloszlást feltételezve): (Cochran, 1962) átlag tapasztalati szórás 95 %-os konfidencia szinten t=1.96 n 1 X S tα N N  N → ∞ Nn nN X S tα N N   Relatív hiba: α = f (mintaszám, relatív szórás)

16 MINTASZÁM CSÖKKENTÉSÉNEK HATÁSA minta / év Heti / napi: 2.7 Kétheti / napi: 3.8 Havi / napi:5.5 Szezonális / napi: 9.6 Mintaszámtól (n) függő tényező: Havi / kétheti: 1.5 Szezonális / kétheti:2.5

17 MINTAVÉTELI HIBA Adott tartósságú érték meghatározásának hibája Relatív hiba: 1-p p %-os tartósságú koncentráció becslési hibája a középérték hibájának háromszorosa!

18 Vízminőség paraméterek változékonysága Függ: vízhozam, szezonális hatások (biológia), szennyezések

19 Vízminőségi jellemzők relatív szórása Víztípusok

20 Mintavétel hibája a szórás függvényében Víztípusok

21 Heti Kétheti Szezonális Kívánt pontosság eléréséhez szükséges éves mintaszám

22


Letölteni ppt "Mintavételi hiba, hibaszámítás. Hibatípusok Véletlen hiba: A mérési eredmények a valóságos értéktől mindkét irányban azonos valószínűséggel, véletlenszerűen."

Hasonló előadás


Google Hirdetések