Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Transzportfolyamatok II. 3. előadás. 2D transzport egyenlet turbulens áramlásban (C H menti átlag): - D x *, D y * 2D egyenlet turbulens diszperziós tényezői.

Hasonló előadás


Az előadások a következő témára: "Transzportfolyamatok II. 3. előadás. 2D transzport egyenlet turbulens áramlásban (C H menti átlag): - D x *, D y * 2D egyenlet turbulens diszperziós tényezői."— Előadás másolata:

1 Transzportfolyamatok II. 3. előadás

2 2D transzport egyenlet turbulens áramlásban (C H menti átlag): - D x *, D y * 2D egyenlet turbulens diszperziós tényezői (Taylor) - Mélység mentén vett átlag (H) 1D transzport egyenlet turbulens áramlásban ( A menti átlag): - D x ** 1D egyenlet turbulens diszperziós tényezője - Keresztszelvény területre vonatkoztatott átlag (A)

3 NAGYSÁGRENDEK cm 2 /s pórusvíz Molek. diff. Függ. ir. turbulens diff. Mély réteg Felszíni réteg Keresztir. diszperzió (2D) Hosszir. diszperzió (2D) Hosszir. diszperzió (1D) Vízsz. ir. turbulens diff. Tavak

4 TRANSZPORTEGYENLET ANALITIKUS MEGOLDÁSAI Szennyezőanyagok permanens elkeveredése Szennyezőanyag-hullám levonulása Medergeometria, sebesség, vízmélység (mérés, számítás) Diszperziós tényező(k) 2D, 1D Pontosabb számítások mérések alapján, numerikus módszerekkel (kalibrálás, igazolás) Analitikus megoldások csak egyszerűbb esetekben vezethetőek le közelítő számítások Fő lépések:

5          )()( )( cvh y cvh xt ch yx )()( y c Dh yx c Dh x yx            2 2 y c D x c v yx      PERMANENS ELKEVEREDÉS Időben állandósult szennyezőanyag-emisszió Permanens kisvízi vízhozam Állandó sebesség, vízmélység és diszperziós tényezők 2D-egyenlet, mélység menti változás elhanyagolása (sekély folyó) Konvekció áthelyeződik Diszperzió szétterül Kezdeti feltétel: M 0 (x 0, y 0 ) - emisszió Peremfeltétel:  c/  y = 0 a partnál

6 x y y v xD2  Sodorvonali bevezetés Hosszirányban: x -½ függvény szerint Keresztirányban: Gauss (normál) - eloszlás  M [kg/s] c max ) 4 exp( 2 2 xD yv xvDh M c (x, y) y x xy   

7 x y cs v xD B  B cs : 0.1 c max -nál  cs B csóvaszélesség B ~ B cs B D v L y x  első elkeveredési távolság  M 1 L BbBb C (x 1, y) x1x1 Sodorvonali bevezetés

8 Parti bevezetés  M x y cs v xD B  B D v L y x  ) 4 exp( 2 xD yv xvDh M c y x xy    c max C (x 1, y) x1x1

9  M Partközeli bevezetés (általános alak) ) 4 (exp ( xDyDy ( y-y 0 ) 2 -v xvD 2h M c x xy   c max )) 4 +exp ( xDyDy ( y+y 0 ) 2 -v x y0y0 C (x 1, y) x1x1 y 0 = 0 → parti y 0 = B/2 → sodorvonali

10 Partélek figyelembevétele (teljes folyószakasz) Peremfeltétel: tükrözési elv alkalmazása B B 2B  M1M1  M1*M1*  M 1 ** C (M 1 ) C (M 1 * ) C tükr = C (M 1 ) + C (M 1 * )

11 Teljes elkeveredés: a koncentráció keresztszelvény menti változása 10 %-nál kisebb L 2 ~ 3L 1 második elkeveredési távolság A parttól y 0 távolságra lévő bevezetés esetén: xvD2h M c xy ) 4 exp ( xDyDy ( y-y 0 +2nB) 2 -v x   ) 4 + exp ( xDyDy ( y+y 0 -2nB) 2 -v x ∑ n= ∞ n=− ∞ ( ) Matematikai leírás: végtelen sor megjelenése  Partélek figyelembevétele (teljes folyószakasz) +

12  M2M2 Több bevezetési pont vagy diffúzor sor: szuperpozíció elve Elkülönített számítás minden egyes bevezetési pontra majd összegzés  M1M1 C = C 1 + C 2 C2C2 C1C1 Több szennyezőforrás esete

13       )(cv xt c x )()( y c D yx c D x yx          NEM-PERMANENS EMISSZIÓ: SZENNYEZÉS HULLÁM Lökésszerű, havária-jellegű terhelések Időben erősen változó terhelések 2D-esetben

14 1D-esetben (keskeny és sekély folyók)   CC    x v t C x 2 2 x C D x   2 ) 4 )( exp( 2 tD tvx tDA G C x x x    Lökésszerű terhelés

15 2tDA G C max x   Egy rögzített pillanatban (x/v x ) x C C (t 1,x) C (t 2,x)  xc L3.4  tD xx 2  x 1 = v x t 1 x 2 = v x t 2 L c1 L c2 Lökésszerű terhelés

16 ) 44 )( exp( 4 22 tD y tD tvx DDht G c yx x xy     tD xx 2  tD yy 2   xc L3.4  yc B3.4  G [kg] c2 B L x 2 =vt 2 c max x 1 =vt 1 C (t 2, x, 0) C (t 2, x 2, y) Lökésszerű terhelés

17 ) ))1((4 )))1((( exp( ))1((( /1 titD titvx titDA tM C x x n i x i         Időben változó kibocsátás ]/[skgM i  t  t i=1 i=n Diszkretizálás elemi egységekre (közel konstans terheléssel) majd szuperpozíció (egymást követő lökésszerű terhelések) G i ~ M i · Δtt - (i-1) · Δt ≥ 0

18 TRANSZPORTEGYENLET NEM-KONZERVATÍV ANYAGOKRA Források és nyelők vannak az áramlási térben Kémiai, biokémiai, fizikai átalakulások történnek Nem konzervatív szennyező: reakciókinetikai tag (  R(C) ) Figyelembe vétele lineáris közelítéssel történik: dC/dt = ±  · C, ahol  a reakciókinetikai tényező (rendszerint elsőrendű kinetika) 1D egyenlet ebben az esetben: Több szennyező egymásra hatása: C 1,C 2,.. C n számú egyenlet!

19 Következő órán számítási példák! Mindenki hozzon számológépet!


Letölteni ppt "Transzportfolyamatok II. 3. előadás. 2D transzport egyenlet turbulens áramlásban (C H menti átlag): - D x *, D y * 2D egyenlet turbulens diszperziós tényezői."

Hasonló előadás


Google Hirdetések