Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.

Hasonló előadás


Az előadások a következő témára: "OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2."— Előadás másolata:

1 OXIGÉN HÁZTARTÁS

2 EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2

3 MÉRLEG SZERVESANYAG (C, N) ÜLEDÉK LÉGZÉS LÉGKÖRI DIFFÚZIÓ FOTOSZINTÉZIS MELLÉKFOLYÓK

4 nap O 2 fogyasztás Szerves szén (C) lebontása BOI  5 BOI 5 L Oxigén fogyasztás (BOI ~ 2.7 szerves C) L – maradék oxigén igény (BOI) - többlépcsős kinetika L0L0 L 0 = BOI  1. rendű kinetika (exponen- ciális) L = L 0 exp(-k 1 t) BOI 5 = BOI  - BOI  exp(-k 1 5)= BOI  (1-exp(-k 1 5)) BOI = L 0 - L 0 exp(-k 1 t)=L 0 (1-exp(-k 1 t))

5 Lebomlási tényező (k 1 ) Lebontási folyamatok sebességét jelzi, kinetikai állandó Dimenzió: 1/nap Hőmérsékletfüggő  = 1.04 T T limit 20C 1 Érvényesség ! Függ a szennyvíztisztítás mértékétől Technológiak 1 (T=20C)f Nincs tisztítás Mechanika Mechanika+kémiai kicsapatás Biológiai tiszt

6 Oxigén bevitel (légköri diffúzió) C < Cs C C s – telítési koncentráció Henry törvény: p = He C s p – parciális nyomás He – Henry szám f(T, P, sótartalom, stb.) T CsCs sótartalom TC s (mg/l)

7 Oxigén bevitel (légköri diffúzió, film elmélet) C V hh Molekuláris diff. tényező (m 2 /s) Oxigén átadási tényező (m/nap) Fajlagos oxigén beviteli tény.(1/nap) Megoldás: exponenciális (D = C S - C)

8 Oxigén beviteli tényező (k 2 ) Mi befolyásolja? - Áramlás jellemzői: turbulencia - Vízmélység, sebesség - Empirikus összefüggések - Érvényesség, dimenzió és kis H!!! EPA procedúrak 2  Mérés -Helyszíni nyomjelzős kísérletek illékony gáz injektálásával (etilén, propán, propilén, kripton)

9 Folyóra Q, v L h, C h q, L szv, C szv Feltételek: permanens (Q(t), E(t)=konst), 1D Szerves C: Vagy:levonulási idő (utazunk a folyón) L 0 számítása (1D): azonnali elkeveredés!

10 Folyóra Oldott oxigén: D = C s - C deficit (inhomogén lineáris diff. egyenlet) Q, v L h, C h q, L szv, C szv

11 Folyóra Q, v L h, C h q, L szv, C szv L x, t* LhLh L0L0 C ChCh C0C0 Cs C min x krit, t* krit D0D0 D max

12 Kritikus hely meghatározása Minimum:  0  2  1.5 – 2 nap Hígulás: L 0, D 0  D max, C min. Szabályozás. Iteráció. Mérés! Több szennyező: szuperponálható USA – WLA döntési modell

13 Több szennyvízbevezetés Q, v L h, C h q 1, L szv 1, C szv 1 x, t* L LhLh L0L0 C ChCh C0C0 Cs C min x krit, t* krit D0D0 D max LhLh q 2, L szv 2, C szv 2

14 Streeter-Phelps (1925) Továbbfejlesztések

15 BOI O2O2 TERHELÉSO 2 BEVITEL ÜLEPEDÉS Streeter & Phelps (1925, Ohio folyó)

16 PÉLDA Települési szennyvízbevezetés hatása

17 VÍZSZENNYEZÉS: Oxigén problémák

18 Streeter-Phelps (1925) Továbbfejlesztések: 1.Nitrifikáció egyszerűsítve 2.Speciális eset: anaerob szakasz számítása 3.Szervesanyag oldott és ülepedő frakciók különválasztása 4.Üledék oxigén igénye 5.Nitrifikáció részletesebben 6.Fotoszintézis, légzés

19 Nitrifikáció egyszerűsítve 5 20 nap BOI BOI C BOI N Kjeldahl N (Szerves N, NH4-N) - L N --> mérés Két lépés: Nitrosomonas 2NH O 2  2NO H 2 O + 4H + Nitrobacter2NO O 2  2NO g O g O 2  : 4.57 g O 2 L N =4.57Kjeldahl N (N BOI -- kevés?) Feltételek: - Nitrifikáló (aerob autotróf) baktériumok, - Lúgos környezet (pH > 6), - Oxigén jelenléte, oldott oxigén > 1-2 mg/l, - Toxikus anyagok gátolják! Tisztított szvíz? - Legegyszerűbb leírás: BOI = C BOI + N BOI

20 PÉLDA (folyt.) Települési szennyvízbevezetés hatása

21 Anaerob szakasz számítása Nagy terhelés Időszakos vagy állandósult anaerob állapot Anaerob lebomlás, gázképződés, fémek visszaoldódása C t* L x1x1 1. Anaerob szakasz kezdete: x 1 (C=0) 2. Anaerob szakasz: x1x1 L1L1 3. Anaerob szakasz vége: x 2 x2x2 L2L2 x2x2

22 Szervesanyag oldott és ülepedő frakciók különválasztása L p = f p Lpartikulált L d = f d Loldott t L0L0 ülepedés biológiai oxidáció

23 Üledék oxigén igénye Okok: -szennyvíz ülepedő részecskéi iszapréteget képeznek -elhalt növények, falevelek felhalmozódása -alga ülepedés -magas szervesanyag tartalmú üledék (iszap): -felső részében aerob, alsó részében anaerob lebomlási folyamatok  oxigén elvonása a vízből -lebomlás  CO 2, CH 4, H 2 S képződés -gázképződés  felszálló buborékok, iszap flotációja -esztétikai problémák Közelítés: konstans (?) megoszló terhelés – S = SOD (g O 2 / m 2,nap) ÜledékS (gO 2 /m 2,nap) Települési szennyvíz(iszap) bevezetés környezetében (4) Szennyvízbevezetés alatti szakaszon 1-2 (1.5) Homokos üledék0.2-1 (0.5) Árapályos folyamtorkolati iszap (0.07)

24 Nitrifikáció Leíró egyenletek (CBOI, NBOI, DO): 1 2 Egyszerű N forgalom („lag”) Ülepedés Denitrifikáció Növényi asszimiláció Hidrolízis, ammonifi- káció Nitrifikáció O2O2O2O2 N1 – szerves N, N2 – NH4-N N3 – NO2-N, NO3-N N1N1 N2N2 N3N3 Oldott O 2 egyenletbe: - k N 2

25 Fotoszintézis, légzés 6CO 2 + 6H 2 0  C 6 H 12 O 6 + 6O 2 Napfény, glükóz Fotoszintézis (P mgO 2 /m 3,nap) 6CO 2 + 6H 2 0  C 6 H 12 O 6 + 6O 2 Légzés (R mgO 2 /m 3,nap) Sötétben t (h) P, R 24 t (h) O2O2 24 Cs túltelítettség CC t1t1 t2t2 PaPa PmPm Napi átlagos O 2 termelés: fotoperiódus Oldott O 2 egyenletbe (R kb Cla-a):

26 Oxigén vonal (ill. összes oldott oxigén deficit) számítása Deficit kezdeti értéke Szerves C lebontás Nitrifikáció Üledék oxigén igénye Fotoszintézis Vízinövényzet légzése

27 AZ OXIGÉN HÁZTARTÁS SZÁMÍTÁS LÉPÉSEI 1.Egy vagy több szennyező? C, N, P, üledék? 2.Modell kiválasztása 3.Alapadatok. Specifikus vonások (pl. kis H)? 4.Elkeveredés? Permanens? Kritikus tervezési állapot? 5.Hol van/lehet a kritikus hely? 6.Hasonló esetek, példák? 7.Paraméterek. Irodalom. Mérés? 8.Számítás 9.Érzékenység


Letölteni ppt "OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2."

Hasonló előadás


Google Hirdetések