Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

6. A 3D grafika alapjai 6.1. A 3D szerelőszalag fölépítése 6.2. Térbeli alakzatok képe 6.3. Térbeli képelemek és modell-adatszerkezetek 6.4. Képelemek.

Hasonló előadás


Az előadások a következő témára: "6. A 3D grafika alapjai 6.1. A 3D szerelőszalag fölépítése 6.2. Térbeli alakzatok képe 6.3. Térbeli képelemek és modell-adatszerkezetek 6.4. Képelemek."— Előadás másolata:

1 6. A 3D grafika alapjai 6.1. A 3D szerelőszalag fölépítése 6.2. Térbeli alakzatok képe 6.3. Térbeli képelemek és modell-adatszerkezetek 6.4. Képelemek összeállítása, leképezés és vágás ( jórészt a 3. fejezet megfelelő részeit idézik föl.) 6.5. Láthatóság, takarás 6.6. A fénysugár-követési módszer 6.7. Árnyalás, a képpontok színe 6.8. Irodalom 6.9. Egyebek

2 6.1.Bevezetés: a 3D grafikus szerelőszalag fölépítése AP, GM, GRASZ (pl. OpenGL) Szerelőszalag: alapműveletek sorozata - Képelemek összeállítása: - Leképezés a VKR-ből a KKR-be,. - Vágás: a kívül eső képrészek elhagyása. - Láthatóság-takarás. - Árnyalás és textúra. - Utókezelés: különböző módszerek az elkészült kép minőségének javítására. KR: VKR, SKR, TKR, SZKR, NPKR, KKR Gyorsítás: dobozolás, térfelosztás, rendezés, koherencia

3 6.2. Térbeli alakzatok képe Térbeli látás: tanult, két szemmel Fénykép, TV: „egy szemmel” – ezt is megtanultuk A térbeliség mozzanatai (depth-cues) - testek takarása - megvilágítás - árnyékok, a fény visszaverődése - a méretek látszólagos távolsági csökkenése - párhuzamosok látszólagos távolsági összetartása - levegő perspektíva: színeltolódás, kontúrok elmosódása - megszokott jelek (féknyomok az úton) - kinetikus mélységhatás: a távolabbi lassabban mozog Ezeket utánozzuk; mennél jobban, annál drágábban

4 Emberi látás és a képernyő Látómezőnk: 120x100 fok, ovális Képernyőnk (50 cm-re): 40x30 fok tájkép: egy szűk ablakon át nézünk a világra A szem fölbontása: 1 szögperc A képernyő raszter-távolsága: 0,25 mm, 2 szögperc

5 6.3. Színterek geometrikus kódolása Leírónyelv (eseti teszt-leírás, vagy pl. VRML) teszt-adatok, archiválás, adatcsere Adatszerkezet (eseti, vagy GMR) dinamikus építés dinamikus elhalás Poligon: különböző méretű cellák poligon: n, P i, n, n i, doboz, P,Q,R, … GRASZ-hívások sorozata (pl. OpenGL)

6 A képet meghatározó adatok A testek geometriája és a felületek anyaga (színe) Nézet (kamera) Megvilágítás (fényforrások) Időbeli változások

7 Térbeli „ képelemek ” 2 helyett 3 koordináta háromszög-sáv négyszögháló

8 A szerelőszalag f ö l é p í t é se é s műveletei  Alkalmazási Program, Geometriai Model GRAfikus alapSZoftver: rajzolás alapműveletek sorozata: szerelőszalag képelemek előkészítése a VKR-ben  leképezés a tárgytérből a képtérbe,  képkivágás; a képkereten kívüli képrészek elhagyása  láthatóság-takarás: takart elemek elhagyása (3D)  raszter-konverzió: a képpontok színe (képpont-puffer)

9

10 A szerelőszalag műveletei 1. Képelemek előkészítése geometriai elemből képelem(ek), elhelyezés a VKR-ben 2. Leképezés a VKR-ből a KKR-be 3. Képkivágás a kereten kívüli részek elhagyása 4. Láthatóság-takarás a takart elemek elhagyása (főleg 3D-ben) 5. Raszter-konverzió az elemet szemléltető képpontok előállítása, a képpontok színe, a képpont a KPP-be

11 6.4. Szesza 1: Képelemek összeállítása SKR -> VKR - hasonlósági transzformáció: TSR - összetett tárgyak hierarchiája Geometriai elemekből képelemek

12 A k é pelemek elők é sz í t é se Rajzoláskor: az AP bejárja a geometriai modellt, kiválasztja az elemeket, és átadja a GRASZ-nak. A GRASZ egyenként átveszi az elemeket és ráteszi a szerelőszalagra A sze.-sza. első művelete: a képelemek előkészítése geometriai elem helyett képelem(ek) és a képelemek elhelyezése: SKR -> VKR (eltolás, forgatás, léptékezés)

13 H: háromszög alakú luk, saját SKR-jében K: kereszt alak, saját SKR-jében K’: lukas kereszt SKR-jében: K’=K+  i N i H S: sáv széleivel (V) és lukas keresztekkel: S = V + Sj MjK’ = V + Sj Mj( K + Si NiH ) M j és N i : transzformációk.

14 A szerelőszalag műveletei 1. Képelemek előkészítése 2. Leképezés 3. Képkivágás 4. Láthatóság-takarás 5. Raszter-konverzió

15 6.4. Szesza 2: Leképezés Középpontos- vagy párhuzamos vetítés Elvileg: VKR -> KKR Gyakran: VKR -> NPKR NPKR-ben láthatóság-takarás A fénysugár-követésnél: a képernyő rasztert vetítjük a SZKR-be és ott számolunk.

16 Lek é pez é s a t á rgyt é rből a k é pt é rbe A tárgyak leképezése a tárgytérből a képtérbe Koordináta-transzformáció A pontok helyvektorának szorzása a leképezés mátrixával: M P’ = M ·P

17 2D Lek é pez é s: Nézetmező (keret), tárgytér: GsetWCSFrame(Kba,Kjf:Gpoint2); Képmező, képtér GsetSCSViewPort(Mba,Mjf:Gpixel); Leképezés: GmapWCStoSCS(P:Gpoint2; P1:Gpixel);

18 3D Leképezés: Párhuzamos, vagy középpontos vetítés VKR->KKR3 Nézetmező: csonkagúla  3D képmező: téglatest Kép: síkvetület a téglatest alapjára Előtte: takarások (láthatóság) a téglatestben (5-6. Fejezet)

19 A szerelőszalag műveletei 1. Képelemek előkészítése 2. Leképezés 3. Képkivágás 4. Láthatóság-takarás 5. Raszter-konverzió

20 6.4. Szesza 3: Vágás Nézetmező: csonkagúla: Cyrus-Beck-3D NPKR téglatest: Cohen-Sutherland-3D Mélységvágás: Közelsík és távolsík Oldalvágás: x-y-ban; síkbeli feladat

21 K é pkiv á g á s A kép keretén kívül eső képrészek elhagyása. Vágó-tartomány (mire, mivel vágunk?): téglalap (téglatest), vagy félsík (féltér) A vágott elemek (mit vágunk?): minden képelem típusra más-más vágó eljárás! Legtöbbször a képtérben, de lehet a tárgytérben is.

22 Normálvektoros szakasz vágás a síkban (a Cyrus-Beck eljárás) Adott: a PQ szakasz és egy félsík h határegyenese; R pontjával és n normálisával. Keressük a PQ szakasznak a félsíkba eső részét (PM)

23 sg(P) = n(P-R) (előjel!) Észrevétel: sg(P) > 0, ha P a félsíkban = 0, ha P a határon < 0, ha P kívül van. Ha sg(P) és sg(Q) >= 0: mindkettő belül, a szakasz „triviálisan látható” Ha sg(P) és sg(Q) < 0: mindkettő kívül, a szakasz „triviálisan eldobható” Különben: „vágni kell”: M = a h és PQ metszéspontja

24 Az M pont kiszámítása: Az M pont rajta van a határon: (M-R)n = 0, azaz: (mx - rx)nx + (my - ry)ny = 0 Az M rajta van a PQ szakaszon: M = P + t (Q - P), valamilyen t paraméterrel, azaz: mx = px + t (qx – px) és my = py + t (qy – py);. Három egyenlet, három ismeretlen: t, mx, my; megoldás mindig van (ha nem „triviális” a helyzet)

25 Megjegyzések: Tetszőleges konvex n-szögre: mindegyik határra, egymásután. Tengelyállású téglalapra: 4x a P és Q sarok kétszer-kétszer, az n vektor: (0,  1), illetve (  1,0) A térben: szakasz vágása féltérre; (M-R)n = 0 skalár-egyenlet és M = P + t (P – Q) három skalár-egyenletet ad. A térben is: téglatestre és tetszőleges konvex sokszöglapra (poliéderre) alkalmazható.

26 Cohen-Sutherland szakasz-vágás a síkban Adott: a PQ szakasz és Egy téglalap b, a, j, f (bal-alul-jobb-felül) határaival Keressük a PQ szakasz téglalapba eső részét.

27 A végpontok BAJF-kódja: BAJF(P)=1000, ha balra kívül, van 0110, ha alul és jobbra kinn 0000, ha belül van. Belül BAJF(P)=0 a sarkokban 2 bit 1-es, másutt 1 bit 1-es. BAJF(P) : négy összehasonlítás „Triviális vizsgálatok”: ha BAJF(P)=0 és BAJF(Q)=0: „triviálisan belül” ha BAJF(P) & BAJF(Q)  0 : „triviálisan eldobható” Különben „vágni” kell

28 Térbeli elemek vágása Normálvektoros vágás: féltér, téglatest, konvex soklap (poliéder) például: a nézetmező csonkagúlája (6. Fejezet) Cohen-Sutherland: téglatest, 27 mező, BAJFEH-kód Mélység-vágás: a Z tengelyre merőleges „közelsík” és „távolsík” Oldal-vágás: XY irányban; síkbeli vetületben

29 6.5.- … a Szesza folytatása Láthatóság-takarás; a képpontokban látható felület-elemek Árnyalás és textúra; a képpontok színe. Utókezelés: az elkészült kép minőségének javítására.


Letölteni ppt "6. A 3D grafika alapjai 6.1. A 3D szerelőszalag fölépítése 6.2. Térbeli alakzatok képe 6.3. Térbeli képelemek és modell-adatszerkezetek 6.4. Képelemek."

Hasonló előadás


Google Hirdetések