Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

A szinusz és koszinuszfüggvény definíciója, egyszerű tulajdonságai.

Hasonló előadás


Az előadások a következő témára: "A szinusz és koszinuszfüggvény definíciója, egyszerű tulajdonságai."— Előadás másolata:

1 A szinusz és koszinuszfüggvény definíciója, egyszerű tulajdonságai

2 A forgásszögeket valós számokkal fogjuk mérni: ívmérték. Ívmérték Az egységnyi sugarú kör (r = 1) egy körívéhez tartozó középponti szöget a körív hosszával határozzuk meg. A teljes kör (360˚) kerülete r = 1 esetén K = 2rπ = 2·1·π = 2π tehát 360˚ = 2π (rad) A félkörív hossza a teljes kör kerületének fele, tehát 180˚ = π (rad)

3 Az X tengely poz irányába mutató egységvektorból úgy származtatható a másik szár irányába mutató e egységvektor, hogy az i-t a megfelelő szöggel elforgatjuk.

4 Legyen <  És jelőlje e az i alapvektor origó körüli  szöggel való elforgatását Írjuk fel az OTP derékszügű háromszögben a szögfüggvényeket.

5 DEF: Ha  egy tetszőleges valós szám, akkor (cos  ; sin  ) az i egységvektor origó körüli  ívmértékű szöggel való elforgatásából kapott e egységvektor.

6 A sin és cos függvény tulajdonságai 1.Tetszőleges  valós szám esetén teljesül a Pitagoraszi azonosság: sin2  cos2  = 1 2. Ha egy e vektort O körül szöggel elforgatunk, akkor egy teljes körüljárás után ugyanazt az e vektort kapjuk. Sin (  +2  ) = sin  ; cos (  +2  ) = cos  Vagyis a sin és cos függvények 2pi szerint periódikusak 3. Ha elforgatunk alfa szöggel, majd ezt még pi-vel is akkor az e vektornak az ellentetjét kapjuk. Vagyis Sin (  +  ) = -sin  ; cos (  +  ) = -cos  4. Ha az alfa szögű e (e1; e2) egységvektort pi/2-vel forgatjuk tovább akkor az e' koordinátái (-e2; e1) lesznek. Vagyis Sin (  +  ) = cos  ; cos (  +  ) = --sin 

7 5. Fontos kapcsolat van az alfa szögű és pi/2-alfa szögű e és e' vektorok között: Sin (  ) = cos  ; cos (  ) = -sin  6. Ha az alfa szügű e vektor koo-i (e1; e2), akkor a -alfa szögű e' vektor Koo-i (e1; -e2). Sin (  ) = -sin  ; cos (  ) = -cos  7. Tükrözzük az e (e1; e2) vektort az y tengelyre, ekkor e'(-e1; e2) lesznek. Sin (  ) = sin  ; cos (  ) = -cos 

8

9 Nevezetes szögek szögfüggvényei


Letölteni ppt "A szinusz és koszinuszfüggvény definíciója, egyszerű tulajdonságai."

Hasonló előadás


Google Hirdetések