Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Diszperziók (nanorészecskék) előállítása

Hasonló előadás


Az előadások a következő témára: "Diszperziók (nanorészecskék) előállítása"— Előadás másolata:

1 Diszperziók (nanorészecskék) előállítása
1. Dezintegrálás (diszpergálás, dezaggregálás) Munkavégzés szükséges (több új felület) 2. Kondenzálás (nukleáció) Aktiválási energia kell (új felület)

2 Diszpergálás Szilárd anyagok diszpergálása: őrlés, aprítás
(általában 1-10 m; ásványelőkészítés, szilikátipar) Eszközök: golyósmalom, hengerszék, kolloidmalom, fúvókás malom (legfinomabb szemcseméret) Az őrlési körülmények optimalizálása Szilárd anyagok diszpergálását elősegítő tényezők: -idegen anyag -nedves őrlés -tenzid adalékolása (Rehbinder-hatás) Újra összetapadnak

3 Diszperziók előállítása kondenzálással
Csoportosítás: halmazállapot szerint (pl. gőzfázisú) komponensek száma (oldat) idegen anyag jelenléte (homogén – heterogén), pl.kondenzcsík (Wilson-féle ködkamra: nukleáció ionokon)

4 A csapadék nagyon rossz oldhatósága nem kedvez a szűrhetőségnek!
Nukleáció oldatokban: (lioszolok előállítása) Befolyásoló tényezők: hőmérséklet, koncentráció, oldhatóság (T és oldószer) Góckeletkezés sebessége: vgk = K [(c-co)/co ] relatív túltelítettség Gócnövekedés sebessége: vgn = k (c-co) abszolút túltelítettség Diszperzitásfok (1/részecskeméret) : D  vgk/vgn  1/co A csapadék nagyon rossz oldhatósága nem kedvez a szűrhetőségnek!

5 A méret befolyásolása a relatív túltelítettségen keresztül:
Jelentős mennyiségű kisméretű részecskék előállítása céljából eredményre vezet: nagy c (koagulálás) vagy kicsiny co (oldószercsere). Demonstráció: kén-szol előállítása oldószercserével

6 Homogén nukleáció gőzfázisban
Tapasztalat szerint: P > P P/P = S (túltelítés) P: gőznyomás, P: egyensúlyi gőznyomás (adott hőmérsékleten)

7 Folyadékcsepp modell: egyetlen gömb alakú csepp keletkezésére
G = 4 r2  - (4 r3 /3) (RT/Vm) ln (P/P) felületi tag (+) térfogati tag (-) A kondenzált állapot energetikailag kedvezőbb! d(ΔG)/dr = 0 kritikus gócméret (rkrit) T = áll. 1 2 1. Góc keletkezése 2. Góc növekedése r: gócsugár γ: felületi feszültség Vm: folyadék moltérfogata

8 A túltelítés hatása a kritikus gócméretre
Tájékoztatásul A túltelítés hatása a kritikus gócméretre S növekedésével egyre kisebb aktiválási energia, egyre kisebb kritikus gócméret. Skrit : 1 db góc/(cm3 s) pl. vízre: 275,2 K-on Skrit = 4,2 (0,89 nm, 80 molekula)

9 Diszperziók előállítása kondenzálással
Wilson-féle ködkamra: nukleáció ionokon (Dr. Raics Péter, fénykép) (Dr. Kemenes László, az AtomErőmű című újságban megjelent írásának felhasználásával.

10 Kolloid részecskék alakjának és nagyságának jellemzése
Részecskék alakja Izometrikus (minden irányban – x,y,z– azonos méretű): Gömb Henger Oktaéder

11 Anizometrikus: Forgási ellipszoid:
oblát („diszkosz”) prolát („szivar”) Ezek torzult formái: lamella fibrilla Fehér azbeszt Kaolinit

12 Részecskeméret jellemzése:
Monodiszperz: azonos méretű részecsék halmaza (szűk méreteloszlás) Polidiszperz: különböző méretű részecskék halmaza (széles méreteloszlás: átlagok és méreteloszlás függvények) Milyen átlaggal jellemezzük a méretet?

13 Ozmózisnyomás: a részecskék számától függ (kolligatív tulajdonság)!
A szórt fény intenzitása a részecskék méretétől függ! Szám szerinti átlag: Mn = (∑ ni Mi)/(∑ni) Tömeg szerinti átlag: Mm = (∑ni Mi2)/∑(ni Mi) A polidiszperzitás jellemzése: Mm/Mn (egyenetlenségi tényező) Monodiszperz esetben értéke 1!

14 Polidiszperz rendszerek méreteloszlása a méret eloszlási függvényekkel jellemezhető
Differenciális méreteloszlás Integrális méreteloszlás Gyakorlás: Rajzolja fel egy szűk- és egy széles méreteloszlású részecskehalmaz függvényeit, valamint egy tridiszperz rendszer összeggörbéjét!

15 80 nm-es szilika részecskékre szorbeált 5 nm-es ZnO részecskék, SEM
A részecske méret (alak) vizsgálati módszerei SEM (pásztázó elektronmikroszkópia) TEM (transzmissziós elektronmikroszkópia) HRTEM (nagy felbontású TEM) AFM és STM (atomi-erők- és pásztázó- alagút-mikroszkópia) Ülepítési módszerek (ultracentrifuga) Ozmózis nyomás Fényszórás (dinamikus és sztatikus) Az alak szerepe: Aggregáció sebessége és gélesedés (gélpont) 80 nm-es szilika részecskékre szorbeált 5 nm-es ZnO részecskék, SEM

16 A részecske méret (alak) vizsgálati módszerei
(a fejlődés felgyorsulása a 80-as évektől) Korszerű szerkezetvizsgálati eszközök: STM (1981, Binnig & Rohrer) AFM („scanning probe microscopes”) HRTEM Látni és manipulálni atomi, molekuláris szinten Pénz és filozófia (transzhumanizmus)

17 AFM-tű, nanopencil, nanolitográfia
Hongjie et al.

18 Thomas Newman (diák) Stanford Egyetem, 1985
e-beam litográfia Dickens: A Tale of Two Cities első oldala A betűk kb. 50 nm szélesek, a terület néhány négyzetmikrométeres.


Letölteni ppt "Diszperziók (nanorészecskék) előállítása"

Hasonló előadás


Google Hirdetések