Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Méréskiértékelés, matematikai statisztika Hipotézisvizsgálat.

Hasonló előadás


Az előadások a következő témára: "Méréskiértékelés, matematikai statisztika Hipotézisvizsgálat."— Előadás másolata:

1 Méréskiértékelés, matematikai statisztika Hipotézisvizsgálat

2 Alapfogalmak I. Hipotézisvizsgálat célja: A sokaságra vonatkozó valamely állítás helyességének ellenőrzése a mintából származó információk alapján Hipotézis: A sokaságra vonatkozó állítás, feltételezés

3 Alapfogalmak II. Nullhipotézis H 0 Aminek az elfogadásáról, ill. visszautasításáról döntünk Alternativ hipotézis H 1

4 Hipotézisvizsgálat során elkövethető hibák A minta alapján A valóságban H 0 igazH 0 nem igaz elfogadjuk H 0 -t Helyes döntés 1 -  Másodfajú hiba elvetjük H 0 -t Elsőfajú hiba  Helyes döntés

5 Szignifikanciaszint: α az elsőfajú hiba elkövetésének kockázata megadja, hogy következtetésünk mekkora valószínűséggel érvényes csökkentése szűkíti a visszautasítási tartományt, növeli az elfogadási tartományt, növeli a másodfajú hiba esélyét

6 Null hipotézis: H 0 :  =  0 Alternatív hipotézis: H 1 :    0    0    0 Hipotézis vizsgálat Kétoldalú próba Egyoldalú próba

7 A hipotézis vizsgálat lépései 1.A nullhipotézis H 0 és az alternatív hipotézis H 1 felállítása 2.A próbafüggvény kiválasztása, és aktuális értékének meghatározása a minta a lapján. 3.A szignifikanciaszint megválasztása 4.A próbafüggvény kritikus értékének meghatározása az eloszlástáblázatból. 5.A visszautasítási és elfogadási tartomány meghatározása. 6.Döntéshozás

8 I. Egymintás próbák

9 Várható értékre vonatkozó hipotézisvizsgálat H 0 : μ =  0 1.) alapsokaság normál eloszlású, σ ismert mintanagyság tetszőleges 2.) alapsokaság normál eloszlású, σ nem ismert, n  30 3.) σ nem ismert, n  30, alapsokaság tetszőleges eloszlású

10 Kritikus érték nagyminta esetén Kritikus érték kis minta esetén

11 Kritikus érték  2 próba esetén

12 Példa 1. Egy 250 g kávét csomagoló gép működésének ellenőrzéséhez 100 elemű véletlen mintát vettek. Korábbi felmérések alapján feltételezhetjük, hogy a töltőtömeg normális eloszlást követ. A csomagok töltési tömege (g)A csomagok száma (db) – ,1 – ,1 – ,1 – ,1 – 10 Összesen100

13 a) Elfogadható-e a minta alapján, hogy az átlagos töltőtömeg 250g (  = 1 %) b) Elfogadható-e a minta alapján, hogy az átlagos töltőtömeg kisebb, mint 250g (  = 1 %) c) Elfogadható-e a minta alapján, hogy a 250g-nál kisebb töltőtömegű csomagok aránya eléri a 60%-ot? e) Elfogadható-e a minta alapján, hogy a töltőtömeg szórása kisebb 5g-nál? g) f) Elfogadható-e a minta alapján, hogy a töltőtömeg szórása legfeljebb 5g-nál? h)!

14 x  (x) x x x x 0,000,50000,520,69851,040,85081,560,94062,400,9918 0,020,50800,540,70541,060,85541,580,94292,500,9938 0,040,51600,560,71231,080,85991,600,94522,600,9953 0,060,52390,580,71901,100,86431,620,94742,700,9965 0,080,53190,600,72571,120,86861,640,94952,800,9974 0,100,53980,620,73241,140,87291,660,95152,900,9981 0,120,54780,640,73891,160,87701,680,95353,000,9987 0,140,55570,660,74541,180,88101,700,95543,200,9993 0,160,56360,680,75171,200,88491,720,95723,400,9996 0,180,57140,700,75801,220,88881,740,95913,600,9998 0,200,57930,720,76421,240,89251,760,96083,80,9999 0,220,58710,740,77031,260,89621,780,9625 z-test 0,240,59480,760,77641,280,89971,800,9641 0,260,60260,780,78231,300,90321,820,9656 0,280,61030,800,78811,320,90661,840,9671 0,300,61790,820,79391,340,90991,860,9686 0,320,62550,840,79951,360,91311,880,9699 0,340,63310,860,80511,380,91621,900,9713 0,360,64060,880,81061,400,91921,920,9726 0,380,64800,900,81591,420,92221,940,9748 0,400,65540,920,82121,440,92511,960,9750 0,420,66280,940,82641,460,92791,980,9761 0,440,67000,960,83151,480,93062,000,9772 0,460,67720,980,83651,500,93322,100,9821 0,480,68441,000,84131,520,93572,200,9861 0,500,69151,020,84611,540,93822,300,9893

15 Student’s t-test Df 0,550,600,700,750,800,900,950,9750,990,995 10,1580,3250,7271,0001,3763,08 6,3112,7131,8263,66 20,1420,2890,6170,8161,0611,89 2,924,306,969,92 30,1370,2770,5840,7650,9781,64 2,353,184,545,84 40,1340,2710,5690,7410,9411,53 2,132,783,754,60 50,1320,2670,5590,7270,9201,48 2,022,573,364,03 60,1310,2650,5530,7180,9061,44 1,942,453,143,71 70,1300,2630,5490,7110,8961,42 1,902,363,003,50 80,1300,2620,5460,7060,8891,40 1,862,312,903,36 90,1290,2610,5430,7030,8831,38 1,832,262,823,25 100,1290,2600,5420,7000,8791,37 1,812,232,763,17 110,1290,2600,5400,6970,8761,36 1,802,202,723,11 120,1280,2590,5390,6950,8731,36 1,782,182,683,06 130,1280,2590,5380,6940,8701,35 1,772,162,653,01 140,1280,2580,5370,6920,8681,34 1,762,142,622,98 150,1280,2580,5360,6910,8661,34 1,752,132,602,95 160,1280,2580,5350,6900,8651,34 1,752,122,582,92 170,1280,2570,5340,6890,8631,33 1,742,112,572,90 180,1270,2570,5340,6880,8621,33 1,732,102,552,88 190,1270,2570,5330,6880,8611,33 1,732,092,542,86 200,1270,2570,5330,6870,8601,32 1,722,092,532,84 210,1270,2570,5320,6860,8591,32 1,722,082,522,83 220,1270,2560,5320,6860,8581,32 1,722,072,512,82 230,1270,2560,5320,6850,8581,32 1,712,072,502,81 240,1270,2560,5310,6850,8571,32 1,712,062,492,80 250,1270,2560,5310,6840,8561,32 1,712,062,482,79 260,1270,2560,5310,6840,8561,32 1,712,062,482,78 270,1270,2560,5310,6840,8551,31 1,702,052,472,77 280,1270,2560,5300,6830,8551,31 1,702,052,472,76 290,1270,2560,5300,6830,8541,31 1,702,042,462,76 300,1270,2560,5300,6830,8541,31 1,702,042,462,75 400,1260,2550,5290,6810,8511,30 1,682,022,422,70 600,1260,2540,5270,6790,8481,30 1,672,002,392, ,1260,2540,5260,6770,8451,29 1,661,982,362,62  0,1260,2530,5240,6740,8421,281,6451,962,332,58

16 χ2χ2 Df0,0050,010,0250,050,100,250,500,750,900,950,9750,990,995 10,00000,00020,00100,0390,01580,1020,4551,322,713,845,026,637,88 20,01000,02010,05060,1030,2110,5751,392,774,615,997,389,2110,6 30,0720,1150,2160,3520,5841,212,374,116,257,819,3511,312,8 40,2070,2970,4840,7111,061,923,365,397,789,4911,113,314,9 50,4120,5540,8311,151,612,674,356,639,2411,112,815,116,7 60,6760,8721,241,642,203,455,357,8410,612,614,416,818,5 70,9891,241,692,172,834,256,359,0412,014,116,018,520,3 81,341,652,182,733,495,077,3410,213,415,517,520,122,0 91,732,092,703,334,175,908,3411,414,716,919,021,723,6 102,162,563,253,944,876,749,3412,516,018,320,523,225,2 112,603,053,824,575,587,5810,313,717,319,721,924,726,8 123,073,574,405,236,308,4411,314,818,521,023,326,228,3 133,574,115,015,897,049,3012,316,019,822,424,727,729,8 144,074,665,636,577,7910,213,317,121,123,726,129,131,3 154,605,236,267,268,5511,014,318,222,325,027,530,632,8 165,145,816,917,969,3111,915,319,423,526,328,832,034,3 175,706,417,568,6710,112,816,320,524,827,630,233,435,7 186,267,018,239,3910,913,717,321,626,028,931,534,837,2 196,847,638,9110,111,714,618,322,727,230,132,936,238,6 207,438,269,5910,912,415,519,323,828,431,434,237,640,0 218,038,9010,311,613,216,320,324,929,632,735,538,941,4 228,649,5411,012,314,017,221,326,030,833,936,840,342,8 239,2610,211,713,114,818,122,327,132,035,238,141,644,2 249,8910,912,413,815,719,023,328,233,236,439,443,045,6 2510,511,513,114,616,519,924,329,334,437,740,644,346,9 2611,212,213,815,417,320,825,330,435,638,941,945,648,3 2711,812,914,616,218,121,726,331,536,740,143,247,049,6 2812,513,615,316,918,922,727,332,637,941,344,548,351,0 2913,114,316,017,719,823,628,333,739,142,645,749,652,3 3013,815,016,818,520,624,529,334,840,343,847,050,953,7 4020,722,224,426,529,133,739,345,651,855,859,363,766,8 5028,029,732,434,837,742,949,356,363,267,571,476,279,5 6035,537,540,543,246,552,359,367,074,479,183,388,492,0 7043,345,448,851,755,361,769,377,685,590,595,0100,4104,2 8051,253,557,260,464,371,179,388,196,6101,9106,6112,3116,3 9059,261,865,669,173,380,689,398,6107,6113,1118,1124,1128, ,370,174,277,982,490,199,3109,1118,5124,3129,6135,8140,2

17 Kétmintás próbák

18 Két sokaság várható értékének különbségére vonatkozó hipotézis-vizsgálat H 0 : μ 1 – μ 2 = δ Minta 1 Minta 2 Elemszám m n Adatok x 11, x 12,..., x 1m x 21, x 22,..., x 2n Mintaátlag Mintabeli szórás- négyzet a)Mindkét sokaság normál eloszlású, és kis minta (feltétel a szórások egyezősége) b) Mindkét sokaságból nagy minta

19 H1H1 valószínűség Alsó kritikus érték (c a ) Felső kritikus érték (c f ) H 1 :  1 ≠  2 1-  /2 H 1 :  1 <  2 1-  - H 1 :  1 >  2 1-  0 Szórások egyezőségére vonatkozó hipotézisvizsgálat H 0 :  1 =  2 Feltétel: normál alapeloszlású sokaságok

20 Kritikus érték F próba esetén

21 Köszönöm a figyelmet!


Letölteni ppt "Méréskiértékelés, matematikai statisztika Hipotézisvizsgálat."

Hasonló előadás


Google Hirdetések