Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Sima Dezső Többmagos/sokmagos processzorok-2 2012. December Version 1.2.

Hasonló előadás


Az előadások a következő témára: "Sima Dezső Többmagos/sokmagos processzorok-2 2012. December Version 1.2."— Előadás másolata:

1 Sima Dezső Többmagos/sokmagos processzorok-2 2012. December Version 1.2

2 Áttekintés 1. Többmagos processzorok megjelenésének szükségszerűsége 2. Homogén többmagos processzorok 3. Heterogén többmagos processzorok 2.1 Hagyományos többmagos processzorok 3.1 Mester/szolga elvű többmagos processzorok 3.2 Csatolt többmagos processzorok 4. Kitekintés 2.2 Sokmagos processzorok

3 3. Heterogén többmagos processzorok

4 3.1 Heterogén mester/szolga elvű többmagos processzorok (1) 3.1 ábra Többmagos processzorok főbb osztályai Desktops Heterogenous multicores Homogenous multicores Multicore processors Manycore processors Servers with >8 cores Conventional MC processors Master/slave architectures Add-on architectures MPC CPU GPU 2 ≤ n ≤ 8 cores General purpose computing Prototypes/ experimental systems MM/3D/HPC production stage HPC near future

5 3. Heterogén többmagos processzorok 3.1 Heterogén többmagos mester/szolga elvű TP-ok A Cell processzor

6 3.1 Heterogén mester/szolga elvű TP-ok - A Cell (1) Cell BE Előzmények: 2000 nyara:Az architektúra alapjainak meghatározása 02/2006: Cell Blade QS20 08/ 2007 Cell Blade QS21 05/ 2008 Cell Blade QS22 Sony, IBM és Toshiba közös terméke Cél: Játékok/multimédia, HPC alkalmazások Playstation 3 (PS3) QS2x Blade Szerver család (2 Cell BE/blade)

7 EIB: Element Interface Bus 3.2 ábra: A Cell BE blokk diagramja SPE: Synergistic Procesing Element SPU: Synergistic Processor Unit SXU: Synergistic Execution Unit LS: Local Store of 256 KB SMF: Synergistic Mem. Flow Unit PPE: Power Processing Element PPU: Power Processing Unit PXU: POWER Execution Unit MIC: Memory Interface Contr. BIC: Bus Interface Contr. XDR: Rambus DRAM 3.1 Heterogén mester/szolga elvű TP-ok - A Cell (2)

8 3.3 ábra: A Cell BE lapka (221mm 2, 234 mtrs) 3.1 Heterogén mester/szolga elvű TP-ok - A Cell (3)

9 3.10 ábra: A Cell BE lapka - EIB 3.1 Heterogén mester/szolga elvű TP-ok - A Cell (4)

10 3.11 ábra: Az EIB működési elve 3.1 Heterogén mester/szolga elvű TP-ok - A Cell (5)

11 3.12 ábra: Konkurens átvitelek az EIB-en 3.1 Heterogén mester/szolga elvű TP-ok - A Cell (6)

12 Teljesítmény @ 3.2 GHz: QS21 Csúcs SP FP: 409,6 GFlops (3.2 GHz x 2x8 SPE x 2x4 SP FP/cycle) Cell BE - NIK 2007: Faculty Award (Cell 3Đ app./Teaching) 2008: IBM – NIK Kutatási Együttműködési Szerződés: Teljesítményvizsgálatok IBM Böblingen Lab IBM Austin Lab 3.1 Heterogén mester/szolga elvű TP-ok - A Cell (7)

13 The Roadrunner 6/2008 : International Supercomputing Conference, Dresden A világ 500 leggyorsabb számítógépe 1. Roadrunner 1 Petaflops (10 15 ) fenntartott teljesítmény (linpack) 3.1 Heterogén mester/szolga elvű TP-ok - A Cell (8)

14 3.13 ábra:A világ leggyorsabb számítógépe: IBM Roadrunner (Los Alamos 2008) 3.1 Heterogén mester/szolga elvű TP-ok - A Cell (9)

15 3.14 ábra: A Roadrunner főbb jellemzői 3.1 Heterogén mester/szolga elvű TP-ok - A Cell (10)

16 3.2 Heterogén csatolt többmagos processzorok

17 3.15 ábra: Többmagos processzorok főbb jellemzői Desktops Heterogenous multicores Homogenous multicores Multicore processors Manycore processors Servers with >8 cores Conventional MC processors Master/slave architectures Add-on architectures MPC CPU GPU 2 ≤ n ≤ 8 cores General purpose computing Prototypes/ experimental systems MM/3D/HPC production stage HPC near future 3.2 Heterogén csatolt többmagos processzorok (1)

18 kernel0 >>() kernel1 >>() HostDevice Csatolt elvű végrehajtás elve GPGPU-k esetén (legegyszerűbb szervezést feltételezve) 3.2 Heterogén csatolt többmagos processzorok (1) (Adatpárh. progr.) CUDA

19 Heterogén csatolt többmagos processzorok feldolgozás gyorsítók (accelerators) A működési elv szempontjából előzmény: heterogén csatolt többprocesszoros rendszerek Példák: korai személyi számítógépek lebegőpontos társprocesszorokkal Intel 286 + 287 386 + 387 Az Intel 486-nak már volt saját “on-chip” lebegőpontos egysége (FPU) (az SX és SL modelek kivételével) Megjegyzés a működési elvhez 3.2 Heterogén csatolt többmagos processzorok (2)

20 Heterogén csatolt többmagos processzorok legfontosabb implementációi Heterogén csatolt többmagos processzorok Integrált grafika Okostelefonok 3.2 Heterogén csatolt többmagos processzorok (3)

21 3.2.1 Integrált grafika

22 Integrált grafika (1) Áttérés angol nyelvű slide-ok használatára

23 Implementation of integrated graphics Implementations about 1999 - 2009 In the north bridge On the processor die In a multi-chip processor package on a separate die Both the CPU and the GPU are on separate dies and are mounted into a single package P South Bridge Mem. NBIG South Bridge Mem. NB P GPU CPU Periph. Contr. Mem. CPU GPU P Intel’s Havendale (DT) and Auburndale (M) (scheduled for 1H/2009 but cancelled) Arrandale (DT, 1/2010) and Clarkdale (M, 1/2010) Implementation of integrated graphics Intel’s Sandy Bridge (1/2011) and Ivy Bridge (4/2012) AMD’s Swift (scheduled for 2009) AMD’s Bobcat-based APUs (M, 1/2011) Llano APUs (DT, 6/2011) Trinity APUs (DT, Q4/2012) Integrált grafika (2)

24 Implementation of integrated graphics Implementations about 1999 - 2009 In the north bridge On the processor die In a multi-chip processor package on a separate die Both the CPU and the GPU are on separate dies and are mounted into a single package P South Bridge Mem. NBIG South Bridge Mem. NB P GPU CPU Periph. Contr. Mem. CPU GPU P Intel’s Havendale (DT) and Auburndale (M) (scheduled for 1H/2009 but cancelled) Arrandale (DT, 1/2010) and Clarkdale (M, 1/2010) Implementation of integrated graphics Intel’s Sandy Bridge (1/2011) and Ivy Bridge (4/2012) AMD’s Swift (scheduled for 2009) AMD’s Bobcat-based APUs (M, 1/2011) Llano APUs (DT, 6/2011) Trinity APUs (DT, Q4/2012) Integrált grafika (2)

25 Example 1: Intel’s Havendale (DT) and Auburndale (M) multi-chip CPU/GPU processor plans (scheduled for 1H/2009 but cancelled about 1/2009) [] Revealed in 9/2007. Both parts were based on the 2. gen. Nehalem (Lynnfield) architecture (45 nm), as shown below. RS – Intel 2009 Desktop Platform Overview Sept. 2007 Same LGA 1160 platform Schedule: 2H ’08 First Samples 1H ’09 Production TDP < 95 W DMI DDR3 Graphics DDR3 IMC PCI-E Power Thread 8M Core Thread Core Ibexpeak PCH PCIe, SATA, NVRAM, etc. Display Analog Digital I/O Control Processors I/O functions Lynnfield processor (Monolithic die) Display Link DMI DDR3 Graphics MCP Processor Power 4M PCI-E DDR3 IMC GPU Thread Core SDVO, HDMI Display Port, DVI Ibexpeak PCH VGA PCIe, SATA, NVRAM, etc. Display Analog Digital I/O Control Processors I/O functions No integrated graphics Havendale processor (Multi-chip package – MCP) http://pic.xfastest.com/z/INTEL%202009%20%20Overview/2009Overview.ppt Integrált grafika (3)

26 Example 2: Intel’s Westmere-EP based multi-chip CPU/GPU processors (2010)-1 [] IDF 2009 Integrált grafika (4) Clarkdale (desktop) Arrandale (mobile)

27 Positioning of Clarkdale (DT) and Arrandale (M) in Intel’s roadmap [] Integrált grafika (5)

28 Single PCH for Intel’s Westmere-EP based multi-chip CPU/GPU processors (2010) [] Integrált grafika (6) PCH (Peripheral Control Hub)

29 Removing integrated graphics (IGFX) from the north bridge to the processor [] (Dedicated graphics via graphics card) Integrált grafika (7)

30 Implementation of integrated graphics Implementations around 1999 - 2009 In the north bridge On the processor die Intel’s Sandy Bridge (1/2011) and Ivy Bridge (4/2012) AMD’s Swift (scheduled for 2009) AMD’s Bobcat-based APUs (M, 1/2011) and Llano APUs (DT, 6/2011) Trinity APUs (DT, Q4/2012) In a multi-chip processor package on a separate die Both the CPU and the GPU are on separate dies and are mounted into a single package P South Bridge Mem. NBIG South Bridge Mem. NB P GPU CPU Periph. Contr. Mem. CPU GPU P Implementation of commercial graphics on the processor die Intel’s Havendale (DT) and Auburndale (M) (scheduled for 1H/2009 but cancelled) Arrandale (DT, 1/2010) and Clarkdale (M, 1/2010) Integrált grafika (8)

31 Key microarchitecture features of the Sandy Bridge vs the Nehalem Example 1: Intel’s Sandy Bridge with 6 Series PCH-1 [] Integrált grafika (9) []: Kahn O., Piazza T., Valentine B.: Technology Insight: Intel Next Generation Microarchitecture Codename Sandy Bridge, IDF 2010 extreme.pcgameshardware.de/.../281270d1288260884-bonusmaterial-pc- games- hardware-12-2010-sf10_spcs001_100.pdf

32 32K L1D (3 clk) AVX 256 bit 4 Operands 256 KB L2 (9 clk) Hyperthreading AES Instr. VMX Unrestrict. 20 nm 2 / Core 256 KB L2 (9 clk) 256 KB L2 (9 clk) 256 KB L2 (9 clk) 256 KB L2 (9 clk) 256 KB L2 (9 clk) 256 KB L2 (9 clk) PCIe 2.0 @ 1.0 1.4 GHz (to L3 connected) 256 b/cycle Ring Architecture (25 clk) DDR3-1600 Die plot of the 4C Sandy Bridge processor [] Sandy Bridge 4C 32 nm 995 mtrs/216 mm 2 ¼ MB L2/C 8 MB L3 []: Intel Sandy Bridge Review, Bit-tech, Jan. 3 2011, http://www.bit-tech.net/hardware/cpus/2011/01/03/intel-sandy-bridge-review/1 Integrált grafika (10)

33 Sandy Bridge desktop datasheet Core i3-21xx, 2C, 2/2011 Core i5-23xx/24xx/25xx, 4C, 1/2011 Core i7-26xx, 4C, 1/2011 Intel 6 series PCH 1 1 Except P67 that does not provide a display controller in the PCH Block diagram of Intel’s Sandy Bridge with 6 Series PCH-2 [] 1 Integrált grafika (11)

34 Key microarchitecture features of the Ivy Bridge vs the Sandy Bridge Example 2: Intel’s Ivy Bridge with 6 Series PCH-1 [] Integrált grafika (12)

35 http://www.itproportal.com/2012/04/24/picture-ivy-bridge-vs-sandy-bridge-gpu-die-sizes-compared/ Ivy Bridge-DT Sandy Bridge-DT 22 nm 1480 mtrs 160 mm 2 32 nm 995 mtrs 216 mm 2 Contrasting the die plots of Ivy Bridge vs. Sandy Bridge (at the same feature size)-1 [] Integrált grafika (13)

36 Note In the Ivy Bridge Intel devoted much more emphasis to graphics processing than in the Sandy Bridge to compete with AMD’s graphics superiority. Contrasting the die plots of Ivy Bridge vs Sandy Bridge (at the same feature size)-2 [] Integrált grafika (14)

37 Example 3: AMD’s “Swift” Fusion APU plan (2009) Preliminaries In 10/2006 AMD acquired the graphics firm ATI and at the same day they announced that “AMD plans to create a new class of x86 processors that integrate the central processing unit (CPU) and graphics processing unit (GPU) at the silicon level, codenamed “Fusion [].” AMD Completes ATI Acquisition and Creates Processing Powerhouse SUNNYVALE, CALIF. -- October 25, 2006 --AMD Remark Although in the above statement AMD designated the silicon level integration of the CPU and GPU as the Fusion initiative, in some other publications they call both the package level and the silicon level integration of the CPU and GPU as the Fusion technology, as shown in the next figure [b] Integrált grafika (15)

38 Extended interpretation of the term Fusion technology in some AMD publications [] Despite this disambiguation, subsequently AMD understood the term Fusion usually as the silicon level integration of the CPU and the GPU. AMD Torrenza and Fusion together, 22 March 2007 Integrált grafika (16)

39 In 12/2007 at their Financial Analyst Day AMD gave birth to a new term by designating their processors implementing the Fusion concept as APUs (Accelerated Processing Units). At the same time AMD announced their first APU family called the Swift family [] as well. Integrált grafika (17)

40 In 11/2008 again at their Financial Analyst Day AMD postponed the introduction of Fusion-based APU processors until the company transitions to the 32 nm technology [].. AMD Fusion now pushed back to 2011 By Joel Hruska | Published: November 14, 2008-Joel Hruska Integrált grafika (18)

41 This is a similar move as done by Intel with their 45 nm Havendale (DT) and Auburndale (M) in-package integrated multi-chip CPU+GPU projects. As leaked from industry sources in 1/2009 Intel canceled their 45 nm multi-chip processor plans in favor of 32-nm multi-chip processors to be introduced in Q1/2010 []. Remark Intel cans 45nm “Auburndale” and “Havendale” Fusion CPUs! Posted by: theovalich | January 31, 2009 Integrált grafika (19)

42 Example 4: AMD’s Piledriver-based Trinity desktop APU line (2012) Announced in 6/2012 Introduced 9/2012 The Trinity APU is based on the Piledriver Compute Module, which is a redesign of the ill fated Bulldozer Compute Module. Integrált grafika (20)

43 http://www.pcper.com/reviews/Editorial/AMD-Vishera-and-Beyond-New-Design-Philosophy-Dictates-Faster-Pace/How-Does-Vishera The Piledriver Compute Module of Trinity [] Integrált grafika (21)

44 http://techreport.com/articles.x/22932 The Trinity APU die with the Piledriver cores [] Integrált grafika (22)

45 Manufacturing Process Die Size Transistor Count AMD Llano32nm228mm 2 1.178B AMD Trinity32nm246mm 2 1.303B Intel Sandy Bridge (4C) 32nm216mm 2 1.16B Intel Ivy Bridge (4C) 22nm160mm 2 1.4B Integrált grafika (23) Die features http://www.anandtech.com/show/6332/amd-trinity-a10-5800k-a8-5600k-review-part-1

46 http://technewspedia.com/meet-the-new-amd-apus-series-a-2-nd-generation-trinity/ The Comal platform that incorporates the (Piledriver-based) Trinity APU and the A70M PCH [] Integrált grafika (24)

47 3.2.2 Okostelefonok

48 3.3.2 Okostelefonok (1) 3.2.2 Smart phone platforms Example: Texas OMAP 5 (OMAP 5430)

49 3.3.2 Okostelefonok (2)

50 4. Kitekintés

51 4. Kitekintés (4) Kitekintés Heterogenous multicores Master/slave architectures Add-on architectures 4.3 ábra: Hetererogén többmagos processzorok várható fejlődése Több CPU Több gyorsító

52 Köszönöm a figyelmet!


Letölteni ppt "Sima Dezső Többmagos/sokmagos processzorok-2 2012. December Version 1.2."

Hasonló előadás


Google Hirdetések