Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Ozsváth Károly NYME ACSJK Testnevelési Tanszék. A diszkriminanciaanalízis (DSC, DISCRIMINANT) /{ DA, MDA }/ csoportok közti különbségek (különbözőségek),

Hasonló előadás


Az előadások a következő témára: "Ozsváth Károly NYME ACSJK Testnevelési Tanszék. A diszkriminanciaanalízis (DSC, DISCRIMINANT) /{ DA, MDA }/ csoportok közti különbségek (különbözőségek),"— Előadás másolata:

1 Ozsváth Károly NYME ACSJK Testnevelési Tanszék

2 A diszkriminanciaanalízis (DSC, DISCRIMINANT) /{ DA, MDA }/ csoportok közti különbségek (különbözőségek), ezen különbségek kialakulásának többváltozós statisztikai elemző módszere. Csoportok szétválasztására, megkülönböztetésére szolgáló módszer, azonban a csoportokat "magától" nem alakítja ki. Az eljárás a varianciaanalízis határesete. A csoportok megkülönböztetésére (diszkrimináció) az analízis egy egyenletrendszert ad meg (MDA vagy DSC modell). E modell szerinti téves besorolások arányával is jellemezhető a DSC - többek közt. A feldolgozás többváltozós ("multiple", röv.: "M") statisztika, és a változók jelentősége/szerepe szerinti bevonással dolgozó u.n. lépésenkénti ("stepwise") eljárása is létezik. A stepwise változat csak szignifikáns esetben vonja be a leginkább megkülönböztető (következő) változót, amit szélsőséges esetben egy későbbi lépés során "visszavonhat", kizárhat… Az SPSS és a STATISTICA a háttérváltozókra/faktorokra is számításokat végez (discriminant function, FUNC, ill. factor, Root). A programcsomag a DSC számítására több metodust is tartalmaz, ezek a végeredményt tekintve azonos eredményt adnak. Az egyes módszerek a bevonási sorrendhez nyújtanak preferenciákat, de pl. a változók végső súlyát, az analízis szignifikanciáját, az egyenletrendszert és a klasszifikációs eredményeket érdemben többnyire nem befolyásolják. Rendkívül hatékony, pontos, de számításigényes eljárás. Ma már széleskörűen alkalmazzák a legkülönfélébb diagnosztikai eljárások kialakításakor az ipari termeléstől kezdve a szociológián át az orvostudományokig. (Pl. orvosi számítógépes diagnosztikai programok !) Pedagógiai - és sporttudományi - felhasználása is kézenfekvő, bár az irodalomban még nem általános. A DSC alkalmazhatósága valószínűsíthető olyan területeken is, amire ma még nem gondolunk. Ilyen lehet pl. a tesztelmélet területe, a validitástól a skálázáson át a standardizálásig.

3 A DSCRIMINANT során vizsgálható (fő) kérdések: 0.1. Különböznek-e egymástól a csoportok ? (összességében) 0.2. Mely csoportok közt szignif. az eltérés ? (páronkénti összehasonlítás/ok) 0.3. A páronkénti különbözőségek sorrendje, erőssége (a vonatkozó F-próba számszerű értéke alapján) 0.4. A csoportok egymástól való megkülönböztetése mennyire pontos, milyen mértékű (minél kisebb Wilks-lambda, reziduális F, stb. a választott metodustól függően) **0.5. A változók jelentősége a csoportok egymástól való elkülönítésében, a különbségek kialakulásában (a bevonás sorrendje, a vonatkozó F érték nagysága, a bevonáshoz -és visszavonáshoz- számított "F to remove" értékek alapján,számított relativ súly %-ban) **0.6. A DSC modell szerinti helyes csoportba sorolások aránya, honnan - hová - milyen arányban sorol át (Classification results, esetszám és % ) Konkrét v.sz.-ek, esetek csoportba sorolása, a csoportba sorolás pontossága 0.8. A csoportok egymástól való különbségének és "egymásba lógásának" ábrázolása, ezen át a csoportok homogenitásának bemutatása 0.9. Milyen összetett háttértényezőkre vezethető vissza a csoportok megkülönböztetése (FUNC), ezekben az egyes változók súlya (hasonlóan a faktoranalizishez itt is korrelációs e.h. a FUNC- val) Az egyes háttértényezők milyen %-ban magyarázzák a különbségeket (csak a különbség varianciáját !) A megkülönböztető "funkció(k)" összefüggése a csoportosítással, azaz a FUNC-k mennyiben magyarázzák a különbségeket (CANOCORR), a csoportokat. Lényegileg az egész DSC egyik központi kérdése, a funkciók és ezeken át az eredeti változók milyen mértékben magyarázzák a kialakított csoportokat. Az érték "közönséges" korrelációnak tekinthető, csak negativ előjelet nem kaphat. Ez értelmetlen is lenne, hiszen nincs "nagyobb" és "kisebb" paraméter értékű csoport, a matematikai változó kvalitativ paraméteként és nem kvantifikálhatóan egy "szempont" (csoport1, csoport2, csoport3, stb.). Miként a kétváltozós (r) és a többszörös (R) korrelációnál, a cancorr négyzete is determinációs együtthatónak felel meg, ekkor %-nak is tekinthető. {{{ A kanonikus korreláció ezzel együtt nehezen értelmezhető. A változók két csoportja - Y= a "csoportok", X= mért paraméterek - közötti összefüggésrendszert jellemzi. Lényegileg bővitett többszörös regresszióanalizisről van szó, ahol közös sajátérték(ek)et (lambda) számítanak, ami(k) a két változócsoport közti korrelációs koefficiens(ek) négyzete(i). A kanonikus korrelációt ebből négyzetgyökvonással képezik. }} Szakmai értelmezés kérdése a hipotetikus funkciók elnevezése, az analizis tényeinek elemzése, az oksági kapcsolatok feltételezett elvi magyarázata.

4 Fábián Gy. – Zsidegh M.: A testnevelési és sporttudományos kutatások módszertana, p., p. Fájl: ergo.sta

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 Összefoglalva:

33

34

35

36

37

38

39 Fábián Gy. – Zsidegh M.: A testnevelési és sporttudományos kutatások módszertana, p. A tankönyvben N=30, itt N=45, azaz az eredmények részleteikben eltérőek!

40

41

42

43

44

45

46

47

48

49

50

51

52 Fájl: eufit2004 ccc.sta

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73 Forward stepwiseStandard

74 Ha bevesszük a csoportosítási változó alapját képező pontszámot a változók közé (amit ráadásul a mért teszteredmények határoznak meg), akkor stepwise módszerrel a következő eredményeket kapjuk:

75

76

77

78

79

80

81

82

83

84 The End of DSC


Letölteni ppt "Ozsváth Károly NYME ACSJK Testnevelési Tanszék. A diszkriminanciaanalízis (DSC, DISCRIMINANT) /{ DA, MDA }/ csoportok közti különbségek (különbözőségek),"

Hasonló előadás


Google Hirdetések