Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Ortogonális pszeudopolikónikus vetület és térképészeti alkalmazása Neumann-nap 2005.

Hasonló előadás


Az előadások a következő témára: "Ortogonális pszeudopolikónikus vetület és térképészeti alkalmazása Neumann-nap 2005."— Előadás másolata:

1 Ortogonális pszeudopolikónikus vetület és térképészeti alkalmazása Neumann-nap 2005

2 Egy térképen a szögtorzulások vagy a területtorzulások kiküszöbölhetők, a hossztorzulások nem. A szögtartó vetületeknél a területtorzulások, a területtartó vetületeknél a szögtorzulások nagyok lehetnek. A szögtartó és területtartó vetületek speciális ábrázolási témákhoz kötődnek. A geokartográfia előnyben részesíti azokat a vetületeket, amelyekben sem a szögek, sem a területek nem torzulnak erősen. Ortogonális fokhálózat – a szögtartás szükséges feltétele – mellett lehetséges a két torzulás egyidejű mérséklése.

3 Az Egyenlítő környéke kis torzulásokkal ábrázolható hengervetületben

4 A pólusok környéke kis torzulásokkal ábrázolható síkvetületben

5 Valamely szélességi kör környéke kis torzulásokkal ábrázolható kúpvetületben

6 Polikónikus vetület alapgondolata

7 A határátmenet után minden szélességi kör sugara megegyezik egy, az adott szélességen érintő kúpvetület érintési parallelkörének sugarával (  ctg  )  ez a polikónikus vetület aholtetszőleges,-ban szigorúan monoton függvény

8 Polikónikus vetületek fajtái a torzulások szerint Közönséges polikónikus vetület (szélességi körök mentén hossztartó) Területtartó polikónikus vetület (Szögtartó polikónikus vetület) Ortogonális polikónikus vetület és

9 Pszeudopolikónikus vetületek: a polikónikus vetületek általánosításai aholtetszőleges,-ban szigorúan monoton függvény tetszőleges szigorúan monoton függvény

10 Az ortogonális pszeudopolikónikus vetület leképezési függvényei ortogonalitás: vagyis

11 Az ortogonális pszeudopolikónikus vetület fajtái Legyen t(  )=t 1  és f( )  f 1  +f 2  3 (+f 3  5 )    (   ) esetén  0 +    (   ) esetén    (   ) +  2  (   ) 2 esetén  0 +    (   ) +  2  (   ) 2 esetén

12 Az átlagos torzultság az ortogonális pszeudopolikónikus vetületben: A fokhálózat menti hossztorzulások a térkép egy pontjában: és A torzultság a térkép egy pontjában: Az átlagos torzultság a vizsgált foktrapézon: Ez numerikusan számítható

13 Átlagos torzultság Európa területére De l’Isle vetülete 100 Ortogonális polikónikus vetület 190 Ortogonális pszeudopolikónikus vetület 82

14 Az ortogonális pszeudopolikónikus vetület paramétereit úgy választjuk meg, hogy az átlagos torzulás az ábrázolandó területen a lehető legkisebb legyen. Az optimális paramétereket minimumszámítás útján határozzuk meg. Európa ábrázolása esetén az optimális paraméterek:        , t 1 =  , f 1 = , f 2 =

15 Európa térképe ortogonális pszeudopolikónikus vetületben

16 Szög- és területtorzulások az ortogonális pszeudopolikónikus vetületben

17 Összehasonlításként: egy kúpvetület (de l’Isle) torzulásai

18 Kanada ortogonális pszeudopolikónikus vetületben

19 Szempontok a geoinformatikai alkalmazhatósághoz: A leképezési függvények inverzei legyenek explicit alakban felírhatók A torzulások csökkentése érdekében a középmeridián menti hossztorzulás lehessen változó is A pontosság növelése érdekében az alapfelület legyen ellipszoid

20 A leképezés függvényeinek van explicit inverze    (  ) +  2  (  ) 2 esetén legyen:

21 A középmeridián mentén megengedjük a hossztorzulás változását: Legyen t(  )=t 1  (  )+t 2  (  ) 2 :  =  1  (  )+  2  (  ) 2 esetén  =  0 +  1  (  )+  2  (  ) 2 esetén

22 Ellipszoid-alapfelülettel:

23 Köszönöm a figyelmet!


Letölteni ppt "Ortogonális pszeudopolikónikus vetület és térképészeti alkalmazása Neumann-nap 2005."

Hasonló előadás


Google Hirdetések