Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Címlap KÉMIAI KÖTÉSEK KÉPZŐDÉSE ÉS FELBOMLÁSA Nobel-díj az átmeneti állapot közvetlen spektroszkópiai megfigyeléséért Keszei Ernő ELTE Fizikai Kémiai Tanszék.

Hasonló előadás


Az előadások a következő témára: "Címlap KÉMIAI KÖTÉSEK KÉPZŐDÉSE ÉS FELBOMLÁSA Nobel-díj az átmeneti állapot közvetlen spektroszkópiai megfigyeléséért Keszei Ernő ELTE Fizikai Kémiai Tanszék."— Előadás másolata:

1 címlap KÉMIAI KÖTÉSEK KÉPZŐDÉSE ÉS FELBOMLÁSA Nobel-díj az átmeneti állapot közvetlen spektroszkópiai megfigyeléséért Keszei Ernő ELTE Fizikai Kémiai Tanszék

2 Mit jelent a „femtokémia” kifejezés? másodperc tera- giga- mega- kilo- mikro- milli- nano- pico- femto- atto- zepto- yocto- peta- a Föld kora az ember megjelenése az emberi élet hossza egy nap egy perc molekula-foton kölcsönhatás nukleonok mozgása atommagban atommag-neutrino kölcsönhatás triplett gerjesztett állapot élettartama szingulett gerjesztett állapot élettartama molekula- forgás molekula- rezgés elektron- és energia- átadás szolvatáció rezgési energia- eloszlás időskála

3 Ahmed Zewail, az évi kémiai Nobel-díjas 1946-ban született Egyiptomban. Tanulmányai: Alexandriai Egyetem (Egyiptom), majd Pennsylvaniai Egyetem (U.S.A.) Ph. D A Nobel-díjat kémiai reakciók átmeneti állapotainak femtoszekundumos spektroszkópiai vizsgálataiért kapta. 1974–76 a University of California Berkely munkatársa, 1976– a California Institute of Technology munkatársa, 1990– professzor, a kémiai-fizikai részleg vezetője. Wolf-díj (1993), Nobel-díj (1999). (Ki Kicsoda, 2000) Zewail

4 Egy kis történelem: kémiai reakciók dinamikájáról Pfaundler: ütközési elmélet és a Maxwell-Boltzmann eloszlás alkalmazása reakciók értelmezésére. Reakció csak egy adott küszöbenergiánál nagyobb energiájú molekulákkal történik 1867 Marcelin: a Lagrange-Hamilton mechanikai formalizmus és a Gibbs-féle statisztikus termodinamika alkalmazása N atomos reagáló rendszer 2N dimenziós fázistérben 1914 Eyring és Polányi átmenetiállapot-elmélete (abszolút sebességi elmélet, átmeneti komplex elmélet) N atomos reagáló rendszer útja egy potenciálfelületen 1935 Történelem

5 Átmeneti állapot Az átmeneti állapot elmélet AB + CA + BC Potenciális energia R BC R AB R BC Vetület („térkép”): átmeneti állapot [A····B····C] ‡ AB + C A + BC

6 Átmeneti állapot 2 Az átmeneti állapot elmélet

7 Az átmeneti állapot kísérleti kimutatása John Polanyi megosztott Nobel-díjat kap érte 1986 F + Na 2 NaF + Na*[F····Na····Na ] ‡ történelem 2

8 Az átmeneti állapot kísérleti kimutatása F + Na 2 NaF + Na*[F····Na····Na ] ‡ NaD szárnyak

9 Az átmeneti állapot kísérleti kimutatása Na-D vonal intenzitása: 1 „szárnyak” intenzitása: D-vonal  szárnyak Ok: az FNa 2 ‡ átmeneti állapot élettartama kb. 10 – 13 s a detektálás ideje kb. 10 – 7 s, és nem egyszerre keletkeznek az átmeneti állapotú molekulák F + Na 2 NaF + Na*[F····Na····Na ] ‡ NaD szárnyak 2

10 Egy kis lézerkémia: lézerfotolízis A– B – CA– B – CA + BC alapállapot gerjesztett állapot magasabb gerjesztett állapot Potenciális energia A – BC távolság lézerfotolízis

11 Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés erősítő minta detektor H2OH2O késleltetés gerjesztés mérés referencia Nd:YAG lézer Ar-ion lézer CPM lézer (1 fs = 0.3  m fényút) lézerekről: pump-probe

12 Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés lézerekről: pump-probe 1 1 m A kanadai Sherbrooke-i Egyetem 1988-ban létesített femtokémiai laboratóriuma

13 Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés lézerekről: pump-probe 2 prizma kettőstörő szűrő rés Ti-zafír kristály Ar-ion lézer

14 Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés pump-probe 3 késleltetés Faraday izolátor BBO dikroikus tükör monokromátor minta parabola tükör optikai szál fényszaggató Ti-zafír lézer

15 Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés pump-probe 4 10 cm10 cm Az MTA SZFKI 2002-ben létesített femtokémiai laboratóriuma

16 Késleltetés 1 Spektroszkópia femtoszekundum időfelbontással: az időbeli késleltetés idő intenzitás gerjesztés  késleltetés mérés

17 Késleltetés 2 idő intenzitás gerjesztés  késleltetés mérés Spektroszkópia femtoszekundum időfelbontással: az időbeli késleltetés

18 Késleltetés 3 idő intenzitás gerjesztés  késleltetés mérés Spektroszkópia femtoszekundum időfelbontással: az időbeli késleltetés

19 Késleltetés 4 idő intenzitás gerjesztés  késleltetés mérés Spektroszkópia femtoszekundum időfelbontással: az időbeli késleltetés

20 Spektroszkópia femtoszekundum időfelbontással: a kísérlet elve 1 fs = 0.3  m fényút rövid impulzus  koherencia és szelektivitás pump-probe 5

21 Spektroszkópia femtoszekundum időfelbontással: kísérleti eredmények pump-probe 6

22 Spektroszkópia femtoszekundum időfelbontással: kísérleti eredmények a lézerimpulzus – időben is – spektrálisan is kiszélesedik konvolúció

23 Spektroszkópia femtoszekundum időfelbontással: hogyan készül a lassított felvétel? erősítő minta detektor késleltetés gerjesztés mérés referencia Nd:YAG lézer Ar-ion lézer CPM lézer 1. a minta felé indul egy gerjesztő impulzus 2. a gerjesztő impulzust követi adott késleltetéssel egy mérő impulzus 3. a detektor megméri a teljes lézerindukált fluoreszcenciát 4. a következő gerjesztő impulzus csak másodperc után indul 1 fs = 0.3  m fényút lassított felvétel

24 1. a minta felé indul egy gerjesztő impulzus 1. a rajtpisztolyra elindul a futam 2. a gerjesztő impulzust követi adott késleltetéssel egy mérő impulzus 2. a rajtot követően adott helyen álló kamerához ér a mezőny 3. a detektor megméri a teljes lézerindukált fluoreszcenciát 3. a kamera ekkor felvesz egyetlen képkockát 4. a következő gerjesztő impulzus csak másodperc után indul 4. a következő futam csak 30 ezer év múlva indul Analógia: 100 méteres futóverseny videofelvétele hogyan készül a lassított felvétel? lassított felvétel 2

25 Reakciótípusok, potenciálfelületek, ultragyors kinetika: az ICN molekula disszociációja ICNI + CN[I····CN ] ‡ I ··· CN

26 Potenciálfelületek közvetlen kísérleti meghatározása klasszikus mechanikai leírás Bersohn, R., Zewail, A. H.: Ber. Bunsenges. Phys. Chem. 92, 373 (1988) potenciál interatomos távolság reakcióidő klasszikus

27 Potenciálfelületek közvetlen kísérleti meghatározása kvantummechanikai leírás Williams, S. O., Imre, D. G.: J. Phys. Chem. 92, 6648 (1988) gerjesztett állapot potenciálja hullámfüggvény C – I atomtávolság idő (fs) kvantum

28 Reakciótípusok, potenciálfelületek, ultragyors kinetika: a NaI molekula disszociációja Na + I – Na + I[Na····I ] ‡ Na ··· I

29 Reakciótípusok, potenciálfelületek, ultragyors kinetika: a NaI molekula disszociációja Na ··· I / 2

30 Reakciótípusok, potenciálfelületek, ultragyors kinetika: ciklobután bomlása tapasztalt  ciklobután  2 etén ciklobután

31 Reakciótípusok, potenciálfelületek, ultragyors kinetika: bimolekulás reakció H + OCO  [H···O···C – O ] ‡  HO + CO 1. lépés: a reakció indítása: IH · CO 2  I + H · CO 2 2. lépés: bimolekulás reakció: Potenciális energia reakciókoordináta H + OCO [H···O···C – O ] ‡ HOCO völgy HO + CO Eredmény: az OH-gyök lézerindukált fluoreszcenciája kb. 5 ps felfutással alakul ki Bimolekulás

32 VÉGE Köszönöm a figyelmüket !

33 az átmeneti állapot hullámfüggvényének alakítása Kémiai reakciók kvantumkontrollja: Legtöbb (ipari szempontból érdekes) reakció többféleképpen is lejátszódhat Kvantumkontroll: az átmeneti állapot megfelelő alakításával elérhető, hogy csak a kívánt reakció játszódjon le, azaz csak a kívánt termék keletkezzen Módszer: az alkalmazott impulzusok tulajdonságait megfelelően változtatva (alak, polarizáció, spektrális eloszlás, köztük lévő késleltetés) megváltozik az átmeneti komplex hullámfüggvénye, azaz megváltozik a reakcióút, más és más termékek keletkezhetnek Megfelelő alkalmazásával kiváló lehetőség nyílhat adott tulajdonságú anyagok tiszta, környezetet kímélő, hulladékmentes előállítására, azaz a I zöld kémia jelenleg még előreláthatatlan fejlődésére Válaszok / kontroll

34 A kvantumkontroll gyakorlati kivitelezése Probléma: egy adott reaktánsállapot szelektív gerjesztése esetén a gerjesztési energia gyorsan szétoszlik a molekula többi módusára is (IVR = Internal Vibrational Relaxation; kb. 1 ps) Megoldás: a molekula különböző módusai közötti interferenciákat úgy kell befolyásolni, hogy konstruktív interferencia éppen a kívánatos reakcióutat megnyitó módus hullámfüggvényében lépjen fel Ehhez ismerni kell az impulzus(ok) és a molekula, valamint a molekula különböző módusai közötti csatolásokat Néhány lehetőség: Módszer: a molekula megfelelő belső koherenciáját az impulzus képviselte külső tér koherenciájának alakításával érjük el Frequency Resolved Coherent Control (CC): pl. két különböző frekvenciájú impulzus két disszociatív állapotot gerjeszt. Ekkor az impulzuson belül a két frekvencia relatív amplitúdója és fázisszöge változtatásval kontrollálható a reakció – azaz az impulzus spektrális összetételével és időbeli kiterjedésével Többfotonos CC: pl. két különböző frekvenciájú impulzus két (közel azonos energiájú) állapotot gerjeszt, de különböző számú foton elnyelésével. Ebben az esetben a felharmonikus frekvenciák arányát változtatják fáziseltolással. Válaszok / kontroll 2

35 Egy további lehetőség: Spektrálisan kiszélesedett impulzus ciripelésének szabályozása Legyen f (t) és F (  ) egymás Fourier-transzformáltja az idő-, ill. frekvenciatérben: Definiáljuk ezek szélességét az alábbiak szerint: ahol N a négyzetes norma: Ha f differenciálható és, akkor Válaszok / Fourier

36 Egy további lehetőség: Spektrálisan kiszélesedett impulzus ciripelésének szabályozása: a gerjesztett molekula hullámfüggvényének „vibrációs fókuszálása” az anharmonikus potenciálfelületen optimális lokalizáció példa: I 2 molekula rezgési hullámfüggvényének szelektív gerjesztése Krause, J. L. et al.: in: Femtosecond Chemistry, szerkesztő: Manz, J., Wöste, L., p , VCH, Weinheim (1995) Válaszok / vibrációs fókusz

37 Egy érdekes alkalmazás: optikai centrifuga Két, spektrálisan kiszélesedett, cirkulárisan polározott impulzus ciripelésének szabályozása: a fotonokat abszorbeáló molekula az eredő forgó térerősséget látja. Villeneuve, D. M., et al.: Phys. Rev. Letters 85, 542 (2000) Válaszok / centrifuga

38 optikai centrifuga Cl 2 izotópszétválasztás Válaszok / centrifuga 2

39 Elektron szolvatációja poláros oldószerekben vízbenmetanolban Válaszok / elektron

40 Elektron szolvatációja vízben E. Keszei, T. H. Murphrey, and P. J. Rossky, J. Phys. Chem., 99, 22 (1995) E. Keszei, S. Nagy, T. H. Murphrey, P. J. Rossky, J. Chem. Phys. 99, 2004 (1993) diabatikus kvantumdinamikai szimulációk vízben: indirekt szolvatációdirekt szolvatáció Válaszok / elektron vízben

41 Elektron szolvatációja metanolban C. Pépin, T. Goulet, D. Houde, J.- P. Jay-Gerin, JPC 98, 7009 (1994) Keszei et al. JCP 99, 2004 (1993) Keszei et al. JPC 101, 5469 (1997): mindkét mechanizmus egyformán jó Válaszok / metanolban


Letölteni ppt "Címlap KÉMIAI KÖTÉSEK KÉPZŐDÉSE ÉS FELBOMLÁSA Nobel-díj az átmeneti állapot közvetlen spektroszkópiai megfigyeléséért Keszei Ernő ELTE Fizikai Kémiai Tanszék."

Hasonló előadás


Google Hirdetések