Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

A számítógép felépítése. Készítette: Kőrössy Ildikó2 Számítógépek típusai 1 Mikroszámítógépek: Személyi számítógépek Mikroszámítógépek: Személyi számítógépek.

Hasonló előadás


Az előadások a következő témára: "A számítógép felépítése. Készítette: Kőrössy Ildikó2 Számítógépek típusai 1 Mikroszámítógépek: Személyi számítógépek Mikroszámítógépek: Személyi számítógépek."— Előadás másolata:

1 A számítógép felépítése

2 Készítette: Kőrössy Ildikó2 Számítógépek típusai 1 Mikroszámítógépek: Személyi számítógépek Mikroszámítógépek: Személyi számítógépek (Personal Computer – PC) Kis méret Könnyű kezelhetőség Felhasználóbarát szoftverek Asztali számítógépek (desktop) Apple: Machintosh Számos IBM számítógép

3 Készítette: Kőrössy Ildikó3 Számítógépek típusai 2 Laptop Hordozható számítógép Hálózatról vagy elemről működtethetőNotebook A laptopnál kisebb méretű hordozható számítógép, általában kényelmesen elfér egy aktatáskában Pocket PC (palmtop) Egészen kis méretű Elfér akár egy zsebben is Egyszerű feladatokra, kevés adat tárolására alkalmas

4 Készítette: Kőrössy Ildikó4 Számítógépek típusai 3 Munkaállomások (workstation) Szintén kis méret Nagy tudás Hatékony szoftverek Tervezők, kutatók használják Széles körűen használatosak: SUN, Apollo, Hewlet-Packard és az IBM munkaállomások

5 Készítette: Kőrössy Ildikó5 Számítógépek típusai 4 Miniszámítógépek Kis méret (kb. asztal nagyságú) Általános célú számítógép Sokszor használják őket mikroszámítógépekből álló hálózat központi gépeként Legelterjedtebbek: a DEC cég VAX gépei

6 Készítette: Kőrössy Ildikó6 Számítógépek típusai 5 Nagyszámítógépek (mainframe) Nagy méret (egységei akár egy szobát is megtöltenek) Általános külön gépteremben helyezik el, ahova csak a kezelőszemélyzet léphet be Nagymennyiségű adat tárolására, feldolgozására, illetve bonyolult számításigényes programok futtatására szolgálnak (több millió utasítás/s) Mamutvállalatok, nagy bankok adatfeldolgozására Kb. ¾ részét: IBM cég készítette

7 Készítette: Kőrössy Ildikó7 Számítógépek típusai 6 Szuperszámítógépek (supercomputers) Legnagyobb méret Nagyon nagy mennyiségű adatot kéépesek rövid idő alatt feldolgozni Általában számos processzor (akár db!) található bennük, melyek párhuzamosan működnek Kormányzati, állami intézmények Világ időjárásának előrejelzése Katonai célok, modellezések, szimulációk CRAY számíítógépek

8 Készítette: Kőrössy Ildikó8 Számítógépek adatábrázolása 1 bit Az információ alapegysége a bit (binary digit), ami 1 vagy 0 (igaz vagy hamis, magasabb vagy alacsonyabb elektromos feszültségi szint) értéket vehet fel. Az információfeldolgozás alapegysége a bájt (Byte, B), a legkisebb címezhető egység, 8 bitből áll.

9 Készítette: Kőrössy Ildikó9 Számítógépek adatábrázolása 2 Egy bájton a bitek sorozata 2 8 =256-féleképpen alakítható ki. Nagyobb egységek: 8 bit = 1 B (bájt) 1024 B =1 KB (Kilobájt) 1024 KB = 1 MB (Megabájt) 1024 MB = 1 GB (Gigabájt) 1024 GB = 1 TB (Terabájt) 1024 TB = 1 PB (Petabájt) 1024 PB = 1 EB (Exabájt)

10 Készítette: Kőrössy Ildikó10 Számítógépek adatábrázolása 3 Adattípusok szöveges numerikus logikai utasítás képi/hang A tárolt, egybetartozó információkat állományoknak, fájloknak (file) nevezzük

11 Készítette: Kőrössy Ildikó11 Karakterek ábrázolása a számítógépben 1 Az angol ABC betűinek száma (26), nagybetűk, számjegyek, írásjelek, egyéb speciális jelek, kb. százféle jel. Tekintetbe véve az egyéb megkívánt jeleket is, egy ilyen jel, karakter tárolására 8 bitet szükséges. Így 2 8 =256 különféle jel tárolható. Egy hozzárendelési szabály, egy táblázat szerint, minden egyes bitsorozat egy karaktert, jelet jelképez, mely szabály nemzetközileg elfogadott, egységes, szabványos kódrendszer (ASCII).

12 Készítette: Kőrössy Ildikó12 Karakterek ábrázolása a számítógépben 2 ASCII = American Standard Code for Information Interchange, általában: mini és mikroszámítógépeken. Az ASCII kódrendszerben a: 0 és 127 között a rögzített (azaz mindenhol a világon ugyanazon) jelek helyezkednek el, 128 és 255 között a nemzetfüggő átdefiniálható jelek vannak (pl. a magyar ékezetes betűk). A Microsoft cég Magyarország (és Közép-Európa) számára a 852-es jelű, Latin II. kódlapot adta. Általában az EBCDIC kódrendszert használják a nagyszámítógépeken.

13 Készítette: Kőrössy Ildikó13 Számábrázolás A számítástechnikában a 2-es és a könnyebb olvashatóság érdekében a 16-os (régebben a 8-as) számrendszer terjedt el. A gépben az adatábrázolás kettes számrendszerben történik. A számítógép eltérően tárolja az egész és a valós (tört) számokat.

14 Készítette: Kőrössy Ildikó14 Fixpontos vagy egész ábrázolás 1 Az előjeles egész számok ábrázolására a kettes komplemens képzés módszerét alkalmazzuk: a bináris szám minden jegyét átfordítjuk a másik jegyre. A szám ellentettjét úgy kapjuk, hogy a komplemenshez hozzáadunk 1-et.

15 Készítette: Kőrössy Ildikó15 Fixpontos vagy egész ábrázolás 2 Az 1 byte-on (8 bit) történő ábrázolás természetesen csak 8 számjegyet jelent, melyből az első bit az előjel bit: 0 : pozitív előjel 1 : negatív előjel 1 byte: -128 … 127 (2 7 -1) (256 lehetőség) 2 byte: … ( ) ( lehetőség)

16 Készítette: Kőrössy Ildikó16 Fixpontos vagy egész ábrázolás 3 Pl: Számítsuk ki: -12 (10) = ? (2) 12 (1 byte-on): komplemense: ellentettje: Tehát: -12 (10) = (2) Ellenőrzés: 12+(-12): (Túlcsordulás!)

17 Készítette: Kőrössy Ildikó17 Lebegőpontos vagy valós ábrázolás 1 Ehhez a számot ún. kettes normálalakra kell hozni: szám=mantissza*bszr karakterisztika Pl.: 154=1,54*10 2 (számrendszer: 10) 11,01=0,1101*2 10 (számrendszer: 2) A mantissza 0 és 1 közé esik. A karakterisztika a hatvány.

18 Készítette: Kőrössy Ildikó18 Lebegőpontos vagy valós ábrázolás 2 Megegyezés szerint az egyszeres pontosságú lebegőpontos számábrázolás 4 byte-on történik, 1 byte: karakterisztika 3 byte: mantissza Ebben az esetben az ábrázolt szám nagysága: és között lehet. Ha 4 byte nem elegendő, 8 byte-on dolgozhatunk,ekkor a szám kétszeres pontosságú lebegőpontos ábrázolásáról beszélünk, 2 byte: karakterisztika 6 byte: mantissza Az első bit ezekben az esetekben az előjeleknek van fenntartva.

19 Készítette: Kőrössy Ildikó19 Lebegőpontos vagy valós ábrázolás 3 A kettes számrendszer tört helyi értékei: 0,5=1/2=0,1 0,25=1/4=0,01 0,125=1/8=0,001 0,0625=1/16=0,0001 stb.

20 Készítette: Kőrössy Ildikó20 Lebegőpontos vagy valós ábrázolás 4 Pl: Számítsuk ki: -45,875 (10) = ? (2) 45 (10) = (2),875 (10) =,111 (2) Tehát normál alak (2)-ben: 0, *2 6 =0, * Előjel: 1 (mert: negatív) 45,875 (10) =101101,111 (2)

21 Készítette: Kőrössy Ildikó21 Lebegőpontos vagy valós ábrázolás 5 - Karakterisztika (hatvány): biten torzítva: +64 (10) = (2) (így a negatív hatványok esetében nincs egyéb változás): - Mantissza (3 byte-on): TEHÁT:

22 Készítette: Kőrössy Ildikó22 A számítógép működése 1 Mit kell tudnia? beolvasni a végrehajtandó műveleteket és az adatokat, végrehajtani a műveleteket az adatokkal, ki kell jeleznie, ill. tárolnia kell az eredményeket, legfőképpen vezérelnie kell az egész folyamatot.

23 Készítette: Kőrössy Ildikó23 A számítógép működése 2 Ennek megfelelően a számítógépnek 5 fő egysége van: bemenő (input) egység, kimenő (output) egység, vezérlő egység aritmetikai (műveletvégző) egység, tároló egység.

24 Készítette: Kőrössy Ildikó24 Fizikai felépítés 1 Fizikailag a legtöbb személyi számítógép legalább három részből tevődik össze: Alapgép Monitor Billentyűzet Szükség esetén: Egér Nyomtató számítógép-konfiguráció A különféle részegységeket tartalmazó, illetve ilyenekkel kiegészített számítógépeket számítógép-konfigurációknak nevezzük.

25 Készítette: Kőrössy Ildikó25 Fizikai felépítés 2 A számítógépek fizikai kiépítése sem egységes. A hordozható számítógépek (laptop, notebook, palmtop) teljesen egybe vannak építve. Asztali kivitelű PC-k (Personal Computer) általában több, egymással összekapcsolt részegységből állnak.

26 Készítette: Kőrössy Ildikó26 Harver, Szoftver Hardver Hardvernek nevezzük valamely számítógép elektronikus és mechanikus alkatrészeinek összességét. Hardver = „kemény” áru, = megfogható. Szoftver Szoftvernek nevezzük a számítógépen futó, illetve futtatható programok összességét. Szoftver = „lágy” áru, = megfoghatatlan. A szoftvert mindig valamilyen adathordozó tartalmazza.

27 Készítette: Kőrössy Ildikó27 Funkcionális felépítés A hardver funkcionálisan három fő részre osztható: Központi feldolgozó egység (CPU) Memória Perifériák

28 Készítette: Kőrössy Ildikó28 CPU 1 Central Processing Unit. A számítógép „agya”. Irányítja a számítógép adatforgalmát, feldolgozza az adatokat. PC: a CPU egyetlen integrált áramköri lapkán helyezkedik el Fő részei: Vezérlő egység (CU) Aritmetikai és logikai műveleteket végző egység (ALU) Regisztertömb

29 Készítette: Kőrössy Ildikó29 CPU 2 utasításkészlet CPU jellemzője: utasításkészlet: azoknak az utasításoknak a halmaza, amelyeket a processzor értelmezni tud. A különféle számítógépcsaládokhoz különféle processzorokat fejlesztettek ki, melyek eltérő utasításkészlettel rendelkeznek. (pl.: IBM PC, Apple Machintosh gépcsalád). Az egy családba tartozó gépek fejlesztésénél a régebbi processzorok utasításkészletét bővítették.

30 Készítette: Kőrössy Ildikó30 CU 1 A központi vezérlő egység (CU) A központi vezérlő egység (CU) feladata: az utasítások értelmezése; az utasítások ütemezése; a fizikai egységek közötti szinkronizációt; az utasítások végrehajtatása. órajel-generátor A CU-ban: egy órajel-generátor: meghatározott időnként órajelet bocsát ki. Az órajelek frekvenciáját Hertz-ben (MHz) mérjük. ciklusidő Két órajel között eltelt idő: ciklusidő.

31 Készítette: Kőrössy Ildikó31 CU 2 Az egyes gépi utasítások végrehajtása az órajel hatására történik. Az órajelre a vezérlő egység megkezdi a következő utasítás végrehajtását. Az utasításnak a ciklusidőn belül be kell fejeződnie, hiszen az újabb órajel hatására megkezdődik a következő utasítás végrehajtása. A ciklusidő hossza - így az órajel-generátor frekvenciája - jól jellemzi a processzor sebességét.

32 Készítette: Kőrössy Ildikó32 CU 3 MikroprocesszorÓrajel 80884,7 MHz MHz MHz MHz Pentium 75, 100, 133, 166, 200, 230, 300, …, MHz, …, 1 GHz

33 Készítette: Kőrössy Ildikó33 CU 4 processzor szóhosszúsága A processzor teljesítményének jellemző: a processzor szóhosszúsága (= hány bitet tud egyszerre kezelni). 286-os típus: 16 bites szóhosszúságú 386-os és magasabb verziószámú mikroprocesszorok: 32, 64 bitesek. Kiegészítő jelek: SX változat: a mikroprocesszoron belüli átviteli vonalak csak 16 bitesek (lassú a processzor működése). DX változat: normál.

34 Készítette: Kőrössy Ildikó34 CU 5 co-processzort A számítási műveletek gyorsítására egy segédprocesszort, úgynevezett co-processzort alkalmaznak. Ezeket elsősorban a lebegőpontosan ábrázolt számok feldolgozására fejlesztették ki. A PC-kben található főprocesszorok ugyanis csak egész számokkal tudnak számolni, a lebegőpontos műveleteket programokkal valósítják meg, s ez lényegesen lassabb, mint a hardware-s megoldás. Vannak több egyenrangú processzort tartalmazó PC-k is. Ez az utasítások párhuzamos végrehajtását teszi lehetővé.

35 Készítette: Kőrössy Ildikó35 ALU aritmetikai-logikai művelet-végrehajtó egység(ALU) Az aritmetikai-logikai művelet-végrehajtó egység (ALU) képes a megszokott aritmetikai és logikai műveletek elvégzésére, valamint a relációk kiértékelésére. ill. összetettebb típusok esetén a lebegőpontos műveletek elvégzésére is. Az ALU alapműveletként többnyire az összeadást, kivonást, az ÉS és a VAGY műveleteket tudja elvégezni. A szorzást és az osztást összeadások illetve kivonások segítségével valósítja meg.

36 Készítette: Kőrössy Ildikó36 Regiszterek regiszterek A regiszterek a programállapot és az adatok átmeneti tárolására szolgálnak. Nagyon gyors memóriák. Magas ára miatt csak néhányat helyeznek el a számítógépekben.

37 Készítette: Kőrössy Ildikó37 Memória 1 Nincs mozgó alkatrész. Az adatok és az utasítások tárolására szolgál. Alapegységei a byte-ok, melyek mindegyike önálló címmel rendelkezik. A byte-okat 0-tól kezdve számozzák meg, ez a szám lesz a byte címe.

38 Készítette: Kőrössy Ildikó38 Memória 2 ROM Csak olvasható - ROM (Read Only Memory) – memória: tartalmát egyszer lehet beírni, ezután változatlan marad. A tápfeszültség megszűnése esetén (pl.: kikapcsoláskor) sem felejti el azt. A ROM-ban a számítógép működéséhez szükséges adatokat és programokat tárolják (BIOS = Basic Input/Output System = perifériák vezérlőprogramjai).

39 Készítette: Kőrössy Ildikó39 Memória 3 EPROM =Elektronikusan programozható ROM. Programozása EPROM író eszközzel. UV sugárzás hatására tartalma törlődik.

40 Készítette: Kőrössy Ildikó40 Memória 4 RAM Az írható, olvasható RAM (Random Access Memory) memóriában, az éppen futó programokat és adataikat tárolják. Felhasználói memória. Tipikus méretek: 256, 512 KB 1, 2, 4, 8, 16, 32, 64, 128, 256 MB.

41 Készítette: Kőrössy Ildikó41 Memória 5 CACHE CACHE = gyorsító tár. Speciális, gyors RAM. A programok végrehajtását gyorsítja. Tipikus méretei: 64, 128, 256, 512 KB. A mikroprocesszor szabadidejében feltölti ezt az éppen használt program körüli utasításokkal, adatokkal. Ekkor a processzor a következő utasítást a CACHE-ből olvassa.

42 Készítette: Kőrössy Ildikó42 Memória 6 CMOS CMOS = akkumulátorról táplált kis fogyasztású RAM. A számítógép konfigurációjához, kiépítettségéhez szükséges adatokat tárolja. Tartalmát a ROM BIOS-ban tárolt SETUP programmal lehet kezelni.

43 Készítette: Kőrössy Ildikó43 Perifériák A számítógéphez különböző perifériák kapcsolhatók hozzá. Ezek egy része: beviteli eszköz beviteli eszköz, amely az adatok bevitelére szolgál, kiviteli eszköz kiviteli eszköz, amely az adatok kiírására szolgál, háttértároló háttértároló. amely az adatok és programok hosszabb ideig tartó tárolása szolgál. Tartalmuk a számítógép kikapcsolása után is megmarad.

44 Készítette: Kőrössy Ildikó44 Mágneses adathordozók 1 Gyakorlatban: egy nem mágnesezhető (pl. műanyag) alapra felvisznek egy vékony mágneses réteget, ez a mágneses adathordozó. Az adathordozó felület állandó mozgásban van a fej előtt. mágneslemez A legelterjedtebb mágneses adathordozók a különböző mágneslemezek.

45 Készítette: Kőrössy Ildikó45 Mágneses adathordozók 2 sáv A lemezfelületek logikailag koncentrikus körökre oszlanak, ezeket a köröket sávoknak nevezzük. Egy-egy sávra egyforma adatmennyiség írható fel, függetlenül attól, hogy a lemez szélén, vagy a közepén helyezkedik-e el. szektor A sávok szektorokra oszthatók, ezek azonos számú byte-ot tartalmaznak (512 B).

46 Készítette: Kőrössy Ildikó46 Merevlemez 1 merevlemez A személyi számítógépekben egy vagy két merevlemezt (winchester) szoktak elhelyezni. A winchester táraknál egy, vagy több merev mágneslemez helyezkedik el egy légmentesen lezárt tokban. Az összes mechanikus alkatrész a tokon belül van, por, szennyeződés nem kerülhet a tokba. A legelterjedtebb winchester tárak kapacitása 80 Mbyte és néhány Gbyte között van.

47 Készítette: Kőrössy Ildikó47 Merevlemez 2 A merevlemez a gép bekapcsolásakor forogni kezd, és csak a gép kikapcsolásakor áll meg. A merevlemez, bár külső tároló, általában a számítógép dobozán belül található, de különálló egységként is csatlakoztatható a számítógéphez. A winchesterek a számítógépbe építésüktől függően lehetnek: Cserélhetők Nem cserélhetők

48 Készítette: Kőrössy Ildikó48 Merevlemez 3 Lemezoldal Lemezoldal: több is lehet (ahány fej). Sávtrack Sáv (track): egy koncentrikus kör egy lemezoldalon. A sávok sűrűn helyezkednek el a lemezoldalakon. Minden olyan koncentrikus kör, ahol a fej pozícionálni tud, egy-egy sáv. Szektorblokk Szektor (blokk): egy sávon belül több körcikk. Köztük hézagok (gap) vannak. A fizikai méretüktől függetlenül azonos mennyiségű adatot tartalmaznak. Cilinder Cilinder: több lemezoldal egymás fölötti sávjai: egy fejállással írhatók/olvashatók a cilinder szektorai.

49 Készítette: Kőrössy Ildikó49 Hajlékony lemez 1 hajlékony lemez (floppy). A másik, széles körben használt adathordozó a hajlékony lemez (floppy). A mágneses felület hordozóanyaga egy hajlékony műanyag lap. A hajlékony lemez a lemezegységbe (floppy meghajtó) helyezve, ha eléri a kívánt fordulatszámot, a tehetetlenség hatására úgy viselkedik, mintha merevlemez lenne. A floppy meghajtó többnyire a számítógép dobozában található.

50 Készítette: Kőrössy Ildikó50 Hajlékony lemez 2 A floppykat papír, vagy műanyag védő tokba helyezik a gyártásnál. Ebből a tokból nem szabad kivenni. Többféle méretű és írássűrűségű floppy van forgalomban. A legelterjedtebbek : Kicsi: 5.25 hüvelykes 360 kbyte kapacitású (Double Density =DD) 5.25 hüvelykes 1.2 Mbyte kapacitású (High Density =HD) Mini: 3.5 hüvelykes 720 Kbyte kapacitású (Double Density =DD) 3.5 hüvelykes 1.44 Mbyte kapacitású (High Density =HD)

51 Készítette: Kőrössy Ildikó51 Hajlékony lemez 3 A floppy jobb oldalán van egy kis nyílás, ez az írásengedélyező nyílás. Az 5.25 hüvelykes floppy lemezen ha leragasztjuk ezt a nyílást a floppy dobozában található erre a célra szolgáló kis etikettel, akkor nem lehet a floppy lemezre írni. A mini floppy esetén ezt a nyílást egy kis tolóka segítségével lehet lezárni. Itt a zárt állapot az, amelyik engedélyezi az írást. Az írás letiltásával megvédhetjük a floppy lemezen tárolt fontos információkat a véletlen törléstől, vagy felülírástól.

52 Készítette: Kőrössy Ildikó52 Formázás Mind a winchestereket, mind a floppykat (ha még) az első felhasználás előtt meg kell formázni. formázás A formázás jelöli ki a sávokon belül a szektorokat, továbbá ellenőrzi a sávok használhatóságát. Az esetleges hibás sávok helyett tartalék sávot jelöl ki. Ha számítógépet vásárolunk, a benne található merevlemez már általában meg van formázva, és bizonyos software-ket is tartalmaz. Formázott floppy lemezeket is árusítanak, ez a dobozon fel van tüntetve (formatted).

53 Készítette: Kőrössy Ildikó53 Streamer streamer Nagymennyiségű adat mentésére (biztonsági másolat készítésére) szolgálnak a streamerek, amelyek mágnesszalagos háttértárak. A mágnesszalag kazettában van elhelyezve, a magnókazettához hasonló módon. Soros az adat elérése. Kapacitásuk 10 Mbyte-tól több Gbyte-ig terjed. A streamer egység külön perifériaként is csatlakoztatható a számítógéphez, de bele is építhető.

54 Készítette: Kőrössy Ildikó54 „A” Drive „A” drive vagy LS-120 floppy meghajtó: Az 1,44 MB-os lemezt is tudja kezelni (felülről csereszabatos). Saját lemezével 120 MB-os a kapacitása. Jóval sűrűbb írásmód. Kb. 10-szer gyorsabb, mint a 3,5”-es egység.

55 Készítette: Kőrössy Ildikó55 ZIP Drive ZIP drive: Külső lemezegység. 100 MB-os speciális lemezeket használ. Nagy sebességű.

56 Készítette: Kőrössy Ildikó56 CD 1 CD- ROM Az optikai adattárolók közül a legelterjedtebb a CD- ROM. Az 1.2 mm vastagságú polikarbonát lemezre gyárilag égetik rá az információt (írás: csigavonalban). Ezt a számítógéphez kapcsolt olvasó-berendezés lézersugár segítségével olvassa ki. A CD-ROM lényegesen lassabb, mint a merevlemez, de nagyon nagy mennyiségű adat tárolható rajta ( Mbyte), mivel sokkal nagyobb a felírási sűrűsége. A CD-ROM elektronikus könyvként használható.

57 Készítette: Kőrössy Ildikó57 CD 2 CD-ROM Csak olvasható: CD-ROM Az információt a lemezkészítő írja rá a lemezre, a felhasználó csak olvashatja onnan az adatokat. WORM CD-R Írható és olvasható: WORM (Write Once, Read Many) használata esetén az adatokat a felhasználó írja rá a lemezre (CD-R lemez = Compact Disc Recordable), és ezután akárhányszor olvashatja. ECD CD-RW Törölhető optikai lemez: ECD (Erasable CD) esetén a CD-RW (ReWritable) lemezekre a gyártó megadja a felírások és törlések lehetséges számát.

58 Készítette: Kőrössy Ildikó58 CD 3 hányszoros A CD-ROM-ok sebességének ma általánosan elfogadott mérőszáma az, hogy hányszoros CD- ROM-ról van szó. Az egyszeres sebességű CD-olvasók kb. 150 kilobájt/másodperc átvitelre voltak képesek. Egy ötvenszeres (névleges) sebességű CD-ROM átviteli sebessége így 7500 kilobájt/másodperc kellene, hogy legyen, de a tényleges olvasási sebessége átlagosan alig valamivel több, mint 4900 kilobájt/másodperc.

59 Készítette: Kőrössy Ildikó59 CD 4 elérési idő A másik, bár kevésbé népszerű mérőszám az elérési idő, amelynek értéke millisecundum között mozog. (Egy tízszeres CD-ROM esetén kb. 150 millisecundum az átlagos hozzáférési idő.) Megjegyzendő, hogy az említett jellemzők egy adott operációs rendszer lehetőségeinek függvénye.

60 Készítette: Kőrössy Ildikó60 CD 5 Íráskor a lemezre irányított lézersugár, amelynek intenzitása nagyon nagy, lokálisan felmelegíti a lemezt, és megváltoztatja az 1 bitnyi terület fényvisszaverő tulajdonságát. A CD-írók legfontosabb jellemzőjét, a sebességet egy számhármassal szokás megadni, amely általában az írás/újraírás/olvasás sebességét jelenti.

61 Készítette: Kőrössy Ildikó61 CD 6 Például 8/4/32x jelölés azt jelenti, hogy írási sebessége nyolcszoros, újraírási négyszeres, olvasási sebessége 32- szeres. Az „egyszeres” itt is 150 kilobájt/másodpercet (és persze névleges sebességet) jelent. Az abszolút luxust a negyvennyolcszoros írás és a huszonnégyszeres újraírás jelenti.

62 Készítette: Kőrössy Ildikó62 Billentyűzet 1 Az alapkonfiguráció beviteli eszköze a billentyűzet. A billentyűzetek megszokott változatain 84 illetve 101/102 gomb található. Az előzőket manapság főleg a notebook-on lehet látni, és abban különböznek 101/102 gombos társaiktól, hogy nem tartalmazzák a külön számbillentyűket.

63 Készítette: Kőrössy Ildikó63 Billentyűzet 2 Egy billentyű leütése egy hét bites kódot (általában ASCII kód) állít elő, amelyhez egy ellenőrző bit kapcsolódik. Ez a kód továbbítódik a központi egységhez. A billentyűzet áramkörei megakadályozzák, hogy több billentyű egyidejű lenyomása esetén felismerhetetlen kód képződjék.

64 Készítette: Kőrössy Ildikó64 Billentyűzet 3 A billentyűzeten a számok és betűk mellet funkcionális billentyűk is találhatók (F1,..., F12), melyek lenyomása egy-egy előre beprogramozott funkció végrehajtását váltja ki. A SHIFT, CTRL és ALT billentyűk más billentyűvel egyidejűleg történő leütése módosítja az illető billentyű által generált kódot. Ezeknek a billentyűknek önmagukban semmilyen hatásuk nincs, így előbb lenyomhatjuk őket, mint azt a billentyűt, amelyikre alkalmazni kívánjuk.

65 Készítette: Kőrössy Ildikó65 Billentyűzet 4 A SHIFT billentyű hatására a nagybetűk, illetve a billentyűk felső karakterei lesznek érvényben. Az ENTER billentyű a bevitt információ - például egy parancs - lezárására szolgál. Hatására a kurzor, amely a képernyőn az aktuális pozíciót mutatja, a következő sor elejére áll. (Szövegszerkesztés.)

66 Készítette: Kőrössy Ildikó66 Billentyűzet 5 Az ENTER fölött található a BACKSPACE billentyű, melyen egy balra mutató nyíl van. Hatására a kurzor egyet balra lép, törölve az ott levő karaktert. A kurzortól jobbra levő karakterek a kurzorral együtt mozognak. A képernyőn történő szerkesztéshez használhatók a nyilak, az INSERT, DELETE, HOME, END, PAGE UP, PAGE DOWN billentyűk.

67 Készítette: Kőrössy Ildikó67 Billentyűzet 6 A nyilak a kurzor mozgatására szolgálnak. Az INS billentyű hatására insert módba kerülünk. Ekkor a leütött karakterek beszúródnak az aktuális kurzorpozíció elé. Az INS billentyű ismételt lenyomásával kilépünk az insert módból. A DEL billentyű a kurzorral kijelölt karakter törlésére szolgál, míg a kurzortól jobbra levű karaktereket eggyel balra mozgatja.

68 Készítette: Kőrössy Ildikó68 Billentyűzet 7 A további négy billentyű hatása programfüggő: A HOME általában sor, vagy szöveg elejére viszi a kurzort, Az END általában sor, vagy szöveg végére viszi a kurzort. A PAGE UP és a PAGE DOWN az előre illetve a hátra felé történő lapozásra szolgál.

69 Készítette: Kőrössy Ildikó69 Billentyűzet 8 Van néhány kapcsolótípusú billentyű is: A CAPS LOCK, amely nagybetűre vált. A NUM LOCK, amelyik a numerikus billentyűzeten a felső számsorra vált. Ezek bekapcsolt állapotát kis lámpácska jelzi a billentyűzet jobb felső részén. Ha a CAPS LOCK be van kapcsolva, akkor a SHIFT billentyű hatására a kisbetűk jelennek meg.

70 Készítette: Kőrössy Ildikó70 Billentyűzet 9 A billentyűzet bal felső sarkában található az ESC (escape) billentyű, amely általában a programokból történő 'menekülésre' szolgál, illetve egy parancs gépelése esetén hatására a kurzor a következő sor elejére áll, az előző sorba beírtak pedig figyelmen kívül maradnak. Elterjedt billentyűzettípus a 101 gombos angol billentyűzet, de kapható magyar ékezetes betűket tartalmazó billentyűzet is.

71 Készítette: Kőrössy Ildikó71 Egér 1 Douglas Engelbart a Stanfordi Kutatóintézetben 1963-ban fából készített egy kis, kézbeillő tárgyat az egyenes vonalú mozgás közvetítésére forgó fémkorongokkal. Az első IBM PC-hez készült egereket a Mouse System cég dobta piacra még 1982-ban. Kezdetben az új, háromgombos eszközt inkább önmagáért vették, hiszen megfelelő szoftverek hiányában nem sokra lehetett használni közepén a Microsoft is megjelentette a saját, két nyomógombos változatát.

72 Készítette: Kőrössy Ildikó72 Egér 2 Az első számítógép, amely kihasználta az eszköz tulajdonságait és nagyközönség elé került, az Apple cég LISA nevű gépe volt (LISA: grafikus felhasználói felület). Majd Apple, Microsoft. Ma már az egér a legtöbbet használt beviteli eszköz a billentyűzet mellett, messze maga mögé utasítva a tablet-et, a fényceruzát, az érintéses képernyőt, de még a hozzá legjobban hasonlító track-ballt is.

73 Készítette: Kőrössy Ildikó73 Egér 3 Az egér a billentyűzetet kiegészítő beviteli eszköz, a nyílbillentyűknek megfelelő funkciókat lát el. Többnyire egy golyóból és két, vagy három billentyűből áll. A golyót az egér tologatásával az asztalon lehet mozgatni, ezzel szinkronban mozog a képernyőn a kurzor (referenciapont). Az optikai elven működő egérben nincs golyó, az elmozdulást optikai érzékelők közvetítik a számítógépnek. Az egéren található billentyűk a kiválasztást szolgálják.

74 Készítette: Kőrössy Ildikó74 Trackball = hanyattegér rollerball) Egy hanyatt fordított egér, melynek mi magunk forgatjuk a golyóját (rollerball). A kurzor vezérlésére egy golyó szolgál, amelyet az ujjunkkal mozgathatunk. Főleg hordozható számítógépeknél használják. Legtöbbször már eleve be vannak építve a gépbe, de lehet őket kapni önálló egységként is. Előnye: kevesebb hely kell az irányításához és mozgatása kisebb megterhelést jelent a csukló számára (ez utóbbi különösen azoknak előnyös, akiknek fáj a csuklójuk).

75 Készítette: Kőrössy Ildikó75 Szkenner 1 Adatbeviteli eszköz. A nyolcvanas évek elején kezdtek olyan képbeviteli eszköz kifejlesztésébe, amely állóképek bevitelére alkalmas. A MIKROTEK nevű tajvani cég állította elő az első szkennert, melynek optikai felbontása 200 dpi. (dots per inch: megadja, hogy hány pontra bontja a képeket egy inchen belül).

76 Készítette: Kőrössy Ildikó76 Szkenner 2 digitalizálni Szkenner segítségével papíron lévő képeket és szövegeket lehet a számítógépbe bevinni, azaz számítógépes adattá alakítani: digitalizálni. CCD A dokumentum (fénysugárral történő) letapogatása során visszatükrözött fényjeleket fényérzékeny félvezető elemek segítségével elektromos impulzussá alakítják. (CCD: Charged Coupled Device, vagyis töltésvezérelt eszköz)

77 Készítette: Kőrössy Ildikó77 Szkenner 3 Az átalakított jelsorozatokat alakfelismerő, vagy képfeldolgozó programokkal dolgozzák fel attól függően, hogy szöveges információról, vagy képekről van-e szó. Ilyen alakfelismerő például a magyar készítésű RECOGNITA program is, melyet világszerte használnak. A RECOGNITA grafikus állományból szöveges állományt hoz létre, amely például tetszőleges szövegszerkesztővel feldolgozható.

78 Készítette: Kőrössy Ildikó78 Szkenner 4 A szkennereknek több nagy családját különböztetjük meg a másodlagos szkennelési irány szerint: kézi szkenner lapáthúzós szkenner Dobszkenner Diaszkenner síkágyas szkenner

79 Készítette: Kőrössy Ildikó79 Szkenner 5 Kézi szkenner (Handy csanner) Kézi szkenner (Handy csanner): mi magunk mozgatjuk a szkennert a kép fölött Hátrányai: nem tudjuk egyforma sebességgel mozgatni a kezünket, széles képek esetén csíkokból kell összerakni a képet. Legfeljebb mm beolvasható lapszélesség.

80 Készítette: Kőrössy Ildikó80 Szkenner 6 Lapáthúzós szkenner (Roll scanner) Lapáthúzós szkenner (Roll scanner): a lapot behúzza a szkenner és úgy olvassa be a képet. Kivételesen a kép mozog. Dobszkenner Dobszkenner: nyomdákban használják. A lapot, filmet, diát egy forgó dobra ragasztják, ami belülről van megvilágítva. Diaszkenner Diaszkenner: csak diák és fotónegatívok beolvasására használható.

81 Készítette: Kőrössy Ildikó81 Szkenner 7 Síkágyas szkenner Síkágyas szkenner: ez a legelterjedtebb. Olyan mint egy fénymásoló. Néhány újabb típus fóliákat is be tud olvasni.

82 Készítette: Kőrössy Ildikó82 Szkenner 8 jellemzői: A szkennerek jellemzői: Felbontás Felbontás: hány pontra bontja a képeket egy inchen belül (mértékegysége: dpi). Színmélység Színmélység: hány színt tud megkülönböztetni. Mit tud beolvasni (diákat, lapokat, könyveket), és ezen belül mekkora méretűt. Hogyan csatlakozik a számítógéphez (nyomtató porton, USB-n (USB előnye: a nagyobb átviteli sebesség és az egyszerű telepítés) vagy saját csatolókártyán keresztül). Adnak-e hozzá szövegfelismerő programot.

83 Készítette: Kőrössy Ildikó83 Szkenner 9 Interpolált felbontás Interpolált felbontás: Az interpoláció egy matematikai eljárás, melynek segítségével két ismert érték között egy ismeretlen érték megbecsülhető. Egy scannerrel, ennek segítségével nagyobb látszólagos felbontás érhető el, hiszen az általa érzékelt képpontokat e módszer révén újabbakkal képes kiegészíteni. A beolvasott kép részletei azonban ettől nem lesznek finomabbak. A gyártók sajnálatos módon nem a fizikai, hanem az interpolált felbontást szokták nagyobb betűmérettel feltüntetni.

84 Készítette: Kőrössy Ildikó84 Vonalkód olvasó 1 Tárgyak beazonosítására használják boltokban, patikákban, könyvtárakban stb. vonalkód A vonalkód meghatározott szabályok szerint felépülő, világos és sötét mezők váltakozásán alapuló optikailag érzékelhető kód. A vonalkódnak a lehető legkisebb helyen a lehetséges legtöbb információt kell hordoznia. nagy biztonsággal lehetővé kell tennie az olvasást.

85 Készítette: Kőrössy Ildikó85 Vonalkód olvasó 2 Működése Működése: A vonalkód különböző szélességű, egymástól megfelelő távolságra lévő fekete és fehér csíkokból áll, melyeket leolvasáskor a vonalkód olvasó megvilágít. A fekete és a fehér csíkok eltérő mértékben verik vissza a fényt, amit a készülék érzékel és értelmez (dekódol), majd az adatokat továbbítja a számítógépnek. A sikeres leolvasást hang- és fényjelzés szokta kísérni.

86 Készítette: Kőrössy Ildikó86 Touchpad Touchpad (Érintő pad) Touchpad (Érintő pad): Többnyire hordozható számítógépekhez. Nincs mozgó alkatrész. Ujjhegyünk mozgását érzékeli. A kattintás a koppintás.

87 Készítette: Kőrössy Ildikó87 Joystick Joystick (botkormány) Joystick (botkormány): Játékokhoz. A profi botkormányok tetején még egy nyolc állású kapcsolót is találunk a szimulációs játékokhoz.

88 Készítette: Kőrössy Ildikó88 Gamepad Játékokhoz, melyek erre fel vannak készítve.

89 Készítette: Kőrössy Ildikó89 Fényceruza Mérnöki tervező munkához, számítógépes grafikusi tevékenységhez. A fényceruza „hegye” egy fotodióda, mely érzékeli a képernyő fényét, ha azt a képcsőhöz érintjük. Hasonló a munka mint az egérrel, csak ez esetben közvetlenül a képernyőn kell „mutogatnunk”, nem pedig az egérkurzorral.

90 Készítette: Kőrössy Ildikó90 Digitalizáló tábla Mérnöki tervező munkához, számítógépes grafikusi tevékenységhez. Érzékelőkkel ellátott rajzlap nagyságú tábla és egy rajta mozgatandó adó.

91 Készítette: Kőrössy Ildikó91 Digitális fényképezőgépek 1 Működési elve hasonlít a hagyományos fényképezőgépekére. Különbség: a kép CCD-re kerül (Charged Coupled Device = töltésvezérelt eszköz), ahol elektromos jellé alakul.

92 Készítette: Kőrössy Ildikó92 Digitális fényképezőgépek 2 A digitális fényképezés célja:az elkészített képek azonnal számítógéppel feldolgozhatóak legyenek. Legfontosabb jellemzők: Felbontás Felbontás: megadja, hogy a fénykép hány képelemből (pixel, képpont) áll. A CCD pixelszámától függ. A felbontás átlagos (maximális) értéke a ma 1280x960 körül van.

93 Készítette: Kőrössy Ildikó93 Digitális fényképezőgépek 3 Érzékenység Érzékenység: Szintén a CCD jellemzője. Megmutatja: az ideális képalkotáshoz mennyi fénynek kell megvilágítania. Az érzékenységet ISO-értékben adják meg, átlagos értéke 100 és 400 között van Profi gépek esetén 1600 is lehet.

94 Készítette: Kőrössy Ildikó94 Digitális fényképezőgépek 4 Tárolás Tárolás: A digitális fényképezőgépek a képeket általában MB tárolókapacitású (flash) memóriakártyát alkalmaznak. Ritkábban winchestert vagy floppyt is használnak. Fontos „kérdés”, hogy hány képet tud rögzíteni egymás után az alaptárolóra a legjobb képminőség választása esetén. Ez az érték nagyon eltérő a fényképezőgéptől függően, 4 és 22 között változik.

95 Készítette: Kőrössy Ildikó95 Digitális fényképezőgépek 5 Tömörítési eljárás Tömörítési eljárás: A képfile-ok méretét általában valamilyen tömörítő eljárás segítségével csökkentik. Ez leggyakrabban a JPEG (Joint Photographic Experts Group). file-formátumok Támogatott file-formátumok: JPG szinte minden esetben, ritkábban BMP, MPG, FlashPix. Csatlakozás Csatlakozás módja: megmutatja, hogy a fényképezőgépet hogyan lehet a számítógéphez kapcsolni. Soros port Soros porton keresztül. USB USB-n keresztül. SCSI SCSI csatolókártyával.

96 Készítette: Kőrössy Ildikó96 Web-kamerák 1 Eredetileg videotelefonálás céljaira kifejlesztett eszközök. Állóképek, illetve kis képfrissítési frekvenciájú, rövid filmek előállítására alkalmasak.

97 Készítette: Kőrössy Ildikó97 Web-kamerák 2 Legfontosabb jellemzőik: Felbontás Felbontás: Hasonló a digitális fényképezőgépeknél említetthez. Általában állítható, maximális értéke 768x576 képpont körül van. Színmélység Színmélység: Bitben megadott színérzékelési pontosság. Értéke bit. Képfrissítési frekvencia: Az átviteli sebesség függvénye; függ a kamera csatlakozásától a számítógéphez. Maximális értéke kép/másodperc. Csatlakozás módja: A jeltovábbításhoz általában a párhuzamos portot és az USB-t szokás használni.

98 Készítette: Kőrössy Ildikó98 Képernyő 1 Az elsődleges információ megjelenítő eszköz. A szabványos monitorok épp úgy katódsugárcsővel működnek, mint a televíziók. A képernyőn a felbontóképességtől függően sűrűbben, vagy ritkábban elhelyezett pontokat (pixel) lehet megjeleníteni. Ezekből a pontokból állnak össze a karakterek, illetve a rajzok. képernyőpontmátrixa A pontok sorokba és oszlopokba vannak rendezve, ez a képernyő pontmátrixa (a mai monitoroknál a képpont mérete 0,25-0,28 mm).

99 Készítette: Kőrössy Ildikó99 Képernyő 2 Egy számítógép képernyő három alapvető jellemzővel írható le: A monitor szabványa; A képernyő mérete; A kép megjelenítésének elve.

100 Készítette: Kőrössy Ildikó100 Képernyő 3 Ugyanakkor további fontos paraméterei is vannak egy monitornak: Digitális vezérlésű-e; Hány Hz-es a kép frissítése; Egy képpont mérete; Támogatja-e az energiatakarékos üzemmódot; Alacsony sugárzású-e = Low Radiation = LR; Villogásmentesség = Non Interlaced = NI.

101 Készítette: Kőrössy Ildikó101 Képernyő 4: Szabványok 1 Hercules Hercules 750x348 CGA CGA (Color Graphics Adapter) 320x szín közül egyszerre 4-et tud kezelni. 640x200 felbontásnál csak feketét és fehéret használunk. EGA EGA (Enhanced Graphics Adapter) 640x színből egyszerre 16 színt kezel.

102 Készítette: Kőrössy Ildikó102 Képernyő 5: Szabványok 2 VGA VGA (Video Graphics Adapter) 640x szín. SVGA SVGA (Super VGA) 800x szín, 1024x768 16, 256, 32768, 65535, 16.7 millió szín, 2048x tól 16.7 millió színt kezel. Színmélység = egy képpontnak hány különböző színárnyalata lehet.

103 Készítette: Kőrössy Ildikó103 Képernyő 6: Szabványok 3 Típus neveFelbont. (sor*oszlop)Színek száma CGA 320* *200 (normál) alapszín+3 szín 16-ból (dupla) alapszín+1 szín Hercules 720*348alapszín+1 szín EGA 640*35016 szín 64-ből VGA 640*48016, 256, , 16 millió SVGA 800*60016, 256, , 16 millió (XGA) 1024*76816, 256, , 16 millió (SXGA) 1280* * , 256, , 16 millió

104 Készítette: Kőrössy Ildikó104 Képernyő 7: Kép megjelenítésének elve 1 CRT CRT (Cathode Ray Tube) monitorok leglényegesebb alkotóeleme a képcső. A képcső belsejében légritkított környezet van.

105 Készítette: Kőrössy Ildikó105 A videojelekkel irányított ágyúk elektronokat lövellnek a képcső elülső részére, amelyen olyan réteg található, amely fotonokat szór szét. A részecskék kibocsátási iránya és intenzitása a videojelek segítségével szabályozható. Az elektronok becsapódási helye időben folytonosan változik (balról jobbra, fentről le). Visszafutási idő az, amikor sor végéről a sor elejére megy az elektronsugár. Képernyő 8: Kép megjelenítésének elve 2

106 Készítette: Kőrössy Ildikó106 Színes képernyő esetén 3 db ágyú létezik, amelyek által kibocsátott elektronok a képcső belső felületén egy pontban metszik egymás útvonalait. A 3 ágyú a színskála egyes összetevőinek felel meg (RGB: Red Green Blue). Az elektronnyaláb olyan nagy sebességgel járja be a képernyőt, hogy az emberi szem számára folytonos fényt bocsát ki. Képernyő 9: Kép megjelenítésének elve 3

107 Készítette: Kőrössy Ildikó107 LCD Notebook, illetve laptop gépek esetében: LCD (Liquid Cristal Display = folyadékkristályos kijelző). Képernyő 10: Kép megjelenítésének elve 4

108 Készítette: Kőrössy Ildikó108 Az LCD képmegjelenítési elve: a folyadékkristályok elektromos feszültség hatására megváltoztatják a kristályszerkezetüket. LED Bizonyos helyeken alkalmazhatnak LED-es (Light Emitting Diode = fényemittáló dióda) kijelzőket is. Ezek képminősége azonban behatárolt, ezért csak kevés helyen (például nagy méretű táblás kijelzők) használják. Képernyő 11: Kép megjelenítésének elve 5

109 Készítette: Kőrössy Ildikó109 képátló A képernyők nagyságát általában úgy jellemzik, hogy megadják a képátló méretét (inchben ill. colban). A szokásos méret 14”, 15”, 17”, 19’, 20”, 21”, 24” (1 inch=2,54 cm). A hasznos képméret kisebb, mint a képcső képátlója. Képernyő 12: Képernyő mérete

110 Készítette: Kőrössy Ildikó110 Két plusz szolgáltatás: Saját memória Saját memória: az egyes beállítások összes paraméterét megjegyzi és tárolja, automatikusan alkalmazza. OSD OSD: On Sceen Display: képernyőn kijelző beállítás: különféle paramétereket a képernyőn jelzi ki. Pl: vízszines, függőleges kép pozíciót, méretet. Képernyő 13: Digitális monitor

111 Készítette: Kőrössy Ildikó111 interlace Osztott (interlace) üzemmód: a páros és páratlan képsorokat felváltva frissíti a képernyő. Nem osztott (non-interlace, NI) üzemmód: a teljes képet egyszerre frissíti a rendszer. Képernyő 14: NI 1

112 Készítette: Kőrössy Ildikó112 függőleges eltérítési frekvencia Azt, hogy egy másodperc alatt hány teljes képet tud megjeleníteni egy képernyő az un képfrissítési frekvencia (függőleges eltérítési frekvencia) jellemzi. Ez az érték ma kb kép/másodperc. vízszintes eltérítési frekvencia Az ún. vízszintes eltérítési frekvencia azt mutatja meg, hogy 1 másodperc alatt hány sort pásztáz végig az elektronsugár. Képernyő 15: NI 2

113 Készítette: Kőrössy Ildikó113 A képernyők által kibocsátott elektromágneses hullámok - hosszabb folyamatos használat esetén - a felhasználó szemét károsíthatják. Low Radiation E hatás csökkentése érdekében a monitorok jó része ma már ún. Low Radiation (LR=Alacsony Sugárzású). A monitorszűrő kiszűri a káros hullámhosszú sugárzást. Képernyő 16: LR

114 Készítette: Kőrössy Ildikó114 A számítógépek a képernyőket két üzemmódban használják: karakteres illetve grafikus üzemmódban. A monitorok fontos jellemzője a felbontóképesség, amely azt jellemzi, hogy hány pontot képes kirajzolni a képernyőre egy sorba és hány pontot egymás alá. felbontás Ez a két szám együtt adja a felbontást. Képernyő 17: Felbontás

115 Készítette: Kőrössy Ildikó115 Egy színes monitor fogyasztása kb. 100 W. Takarékos módban a monitor áramfelvétele csak mintegy 5-15%-a a normál módénak. DPMS DPMS = Device Power Management System (= eszköz teljesítmény vezérlő rendszer) = a monitor által önállóan végzett energia felvétel szabályozó szolgáltatással rendelkező monitorok jelzése. Képernyő 18: Energiatakarékos üzemmód 1

116 Készítette: Kőrössy Ildikó116 A DPMS-hez saját processzorral rendelkező monitor szükséges, mely képes automatikusan, egyéb beállítás és vezérlő jel nélkül is a megfelelő energiatakarékos üzemmódba váltani. A monitor energia felvételét szoftveres úton. Vigyázat Vigyázat! Csak akkor kapcsoljuk be a szolgáltatást, ha a monitorunk támogatja az energiatakarékos üzemmódokat, ellenkező esetben a képernyőt tönkre is tehetjük! Energy Star Ha e szoftveres vezérlést támogatja a képernyő, akkor megfelel az Energy Star szabványnak. Képernyő 19: Energiatakarékos üzemmód 2

117 Készítette: Kőrössy Ildikó117 Képernyő 20: Monitorvezérlő kártya 1 A felbontóképesség, a színmélység és a képfrissítési frekvencia egymással szorosan összefüggő jellemzők, melyeket a monitor és a monitorvezérlő kártya együtt határoz meg. A grafikus kártyán levő memória határozza meg (döntően) a felbontást és a színmélységet.

118 Készítette: Kőrössy Ildikó118 Fontos szabály, hogy ha x*y felbontásban z bájt színmélységet szeretnénk, akkor, ahhoz legalább x*y*z bájt memória kell a kártyán. z=1 bájt esetén 256 z=2 bájt esetén (hi-color) z=3 bájt esetén (true color) szín jeleníthető meg. Képernyő 21: Monitorvezérlő kártya 2

119 Készítette: Kőrössy Ildikó119 Ma egy átlagos grafikus kártyán legalább 16 Megabájt memória van, de nem ritkák a MB-os kártyák sem. A grafikus kártyáktól ma már elvárják, hogy a 3D-s grafikához (pl. multimédiás programok, játékok…) támogatást nyújtsanak (bizonyos gépi szintű grafikus utasításokat „értsenek” és hajtsák őket végre. Képernyő 22: Monitorvezérlő kártya 3

120 Készítette: Kőrössy Ildikó120 Nyomtatók 1 A nyomtató egy olyan külső eszköz, ami a számítógép által közölt információt papíron jeleníti meg, a felhasználó számára közvetlenül értelmezhető formában. Leggyakrabban a számítógép által küldött bájtok soros, vagy párhuzamos I/O illesztő egységen keresztül kerülnek át a nyomtatóhoz.

121 Készítette: Kőrössy Ildikó121 Minden egyes nyomtatónak van kézzel kapcsolható üzemmód váltója, amely segítségével a felhasználó soremelést, lapemelést, aktív-passzív állapot közötti cserét képes végezni. Nyomtatók 2

122 Készítette: Kőrössy Ildikó122 Az információ papíron történő megjelenítése szerint a nyomtatókat négy csoportba soroljuk: Sornyomtatók Mátrixnyomtatók Tintasugaras nyomtatók Lézernyomtatók Plotterek, rajzgépek Speciális nyomtatók (hőnyomtatók, …). Nyomtatók 3

123 Készítette: Kőrössy Ildikó123 Nyomtatók 4: Jellemzői 1 A nyomtatók legfontosabb jellemzői a következők: Szöveges (karakteres) nyomtatási sebesség Felbontás Nyomtatási sebesség Nyomtatási technológia Leíró nyelv

124 Készítette: Kőrössy Ildikó124 Szöveges (karakteres) nyomtatási sebesség CPS Szöveges (karakteres) nyomtatási sebesség: Azt mutatja meg, hogy a nyomtató 1 másodperc alatt hány karaktert jelenít meg. (CPS: Characters per Secundum, vagy néha karakter/másodperc/sor.) Főleg sor- és mátrixnyomtatóknál használatos jellemző. Nyomtatók 5: Jellemzői 2

125 Készítette: Kőrössy Ildikó125 Felbontás Felbontás: Azt mutatja meg, hogy hány képpontot jelenít meg a nyomtató inchenként. (DPI: Dots per Inch) Ez általában két számot jelent a vízszintes illetve függőleges irányoknak megfelelően. Tintasugaras és lézernyomtatók esetén fontos jellemző. Nyomtatók 6: Jellemzői 3

126 Készítette: Kőrössy Ildikó126 Nyomtatási sebesség Nyomtatási sebesség: Azt mutatja meg, hogy a nyomtató hány oldalt (általában A/4-es lapot) nyomtat ki percenként. Főleg tintasugaras és lézernyomtatók jellemzője. Nagy mértékben függ attól, hogy a kinyomtatandó oldalon pl. színes vagy fekete-fehér a megjelenítendő dokumentumrész. Nyomtatók 7: Jellemzői 4

127 Készítette: Kőrössy Ildikó127 Nyomtatási technológia: Nyomtatási technológia: Tintasugaras nyomtatók esetén a megjelenítés technológiáját mutatja meg. Leíró nyelv: Leíró nyelv: A lézernyomtatók jellemzője, azt mutatja meg, hogy a nyomtató milyen nyelven írt parancsokat képes végrehajtani. Ilyenek például a PCL nyelv, illetve a PS (PostScript) nyelv. Nyomtatók 8: Jellemzői 5

128 Készítette: Kőrössy Ildikó128 Nyomtatók 9: Sornyomtató 1 Működésük időtartama alatt egy sort egy ciklus alatt képesek kinyomtatni. Írási sebességük nagy, kb sor/perc. A kiírandó karakterek egy henger palástján helyezkednek el.

129 Készítette: Kőrössy Ildikó129 Lényeges, hogy a sornyomtató mindig egy sornyi információt vesz át a számítógéptől. A henger egy-egy alkotója mentén ugyanannak a jelnek a tükörképe található annyiszor, ahány karakterpozíciót tartalmaz maximálisan egy sor. Az egy sorba írható karakterek száma általánosan karakter. A henger szimmetriatengelye körül nagy sebességgel forog. Az alkotókkal párhuzamosan egy kalapácssor található. Nyomtatók 10: Sornyomtató 2

130 Készítette: Kőrössy Ildikó130 Nyomtatók 11: Sornyomtató 3 A sor egy kalapácsa akkor aktiválódik, amikor a sorba kiírandó karakter, a kalapács és a henger szimmetriatengelye egy síkba kerül. Egy adott pillanatban az aktuális sor azonos jeleinek megfelelő formák íródnak a papírra, függetlenül a sorban elhelyezkedési helyüktől. Amikor minden karakter sorra került, megtörtént a sor kiírása. A henger egyetlen fordulatával egy sornyi információ íródik a papírra. Ezután a lap és a festékkendő egy sorra elmozdul, és megismétlődik a fentebb leírt folyamat az adott sorra.

131 Készítette: Kőrössy Ildikó131 Nyomtatók 12: Mátrixnyomtató 1 Ennek segítségével lehetőség van grafikus képek nyomtatására is. A nyomtatvány minősége a tűk számától függ (9 illetve 24 tűs nyomtatók). Általában két minőségi kategóriát használnak: Draft illetve az LQ (Letter Quality)

132 Készítette: Kőrössy Ildikó132 Nyomtatók 13: Mátrixnyomtató 2 A kocsi vízszintes irányú mozgást végez, a tolórúd mentén. Az írófej a festékszalagon keresztül a papírra írja a karaktereket. Egy sor kinyomtatása után a papír függőleges irányba elmozdul felfelé egy sornyit.

133 Készítette: Kőrössy Ildikó133 Nyomtatók 14: Mátrixnyomtató 3 Az írófej olyan téglatest, ami a papírlappal párhuzamos keresztmetszetén egy paralelogramma alakú tűmátrix található (a tűk mérete kb. 0,014 inch). Egy tűs nyomtató karakteres nyomtatási sebessége a minőségen kívül függ attól is, hogy egy hüvelykre hány karaktert kell nyomtatnia (kb ). A nyomtatási sebesség karakter/másodperc/sor körül van.

134 Készítette: Kőrössy Ildikó134 Nyomtatók 15: Mátrixnyomtató 4 Előnyei Előnyei: viszonylag jó minőségű kép; lehetséges a színes nyomtatás is, ha a festékszalag többszínű; könnyen kezelhető. Hátránya Hátránya: kissé zajos, grafikus képek kinyomtatása igen lassú. puffer Néhány kilobájtos pufferük van, ami azt jelenti, hogy a számítógépnél a nyomtatás leállítása után is - a puffer kiürüléséig – folytatódik a nyomtatás. Van egy ON/OFF kapcsoló, melynek segítségével a nyomtatás manuálisan leállítható, és ha le akarjuk állítani a nyomtatást ezt célszerű használni.

135 Készítette: Kőrössy Ildikó135 Nyomtatók 16: Tintasugaras nyomtató 1 A nyomtatás elve hasonló a mátrixnyomtatóknál tárgyaltakhoz. tintacseppek Ebben az esetben az írófejen tűk által „rajzolt” pont helyett vékony csövekből (fúvókákból) tintacseppek kerülnek a papírra.

136 Készítette: Kőrössy Ildikó136 Nyomtatók 17: Tintasugaras nyomtató 2 A tintasugaras nyomtatók különböző nyomtatási eljárásokat (technológiákat) használnak: Bubble jet Bubble jet-eljárás Piezo Piezo-eljárás

137 Készítette: Kőrössy Ildikó137 Nyomtatók 18: Tintasugaras nyomtató 3 Bubble jet Bubble jet-eljárás: Lényege, hogy a fúvókacsatornában lévő tintát nyitás előtt felhevítik, és így egy gázbuborék keletkezik. A térfogat-növekedés hatására a buborék előtt levő tinta kipréselődik a fúvókából. Ezután a tintacsatorna lehűl, és újabb tintaadag szívódik be. Ilyen technológiát használ a Canon illetve a Hewlett-Packard tintasugaras nyomtatók többsége.

138 Készítette: Kőrössy Ildikó138 Nyomtatók 19: Tintasugaras nyomtató 4 Piezo Piezo-eljárás: Lényege, hogy a tintatartály elektromos feszültség hatására összehúzódik (piezoelektromos hatás) és kipergeti a tintacseppet. Piezo-eljárást használ az Epson tintasugaras nyomtatók többsége.

139 Készítette: Kőrössy Ildikó139 Nyomtatók 20: Tintasugaras nyomtató 5 A tintasugaras nyomtatók ma talán a legnépszerűbbek. Oka a gazdaságosság: a minőség/ár arány a tintasugaras nyomtatóknál a legkedvezőbb, a nyomtató árára és egy lap előállításának fajlagos költségeire is. Lehetséges a színes nyomtatás (színes patron behelyezése illetve kétpatronos felépítés esetén). Egy átlagos tintasugaras nyomtató felbontása 600x1200; a jobb nyomtatóknál 2400x1200 dpi (képpont/hüvelyk) körül van.

140 Készítette: Kőrössy Ildikó140 A nyomtatási folyamatot az eszköz belsejében található célszámítógép irányítja. Sebessége kb lap/perc. Nyomtatók 21: Lézernyomtató 1

141 Készítette: Kőrössy Ildikó141 A karaktereknek megfelelő bitképek (fontok) nyomtatóba történő betöltésével nagyon jó minőségű nyomtatott szöveg készíthető. Nyomtatók 22: Lézernyomtató 2

142 Készítette: Kőrössy Ildikó142 Egy átlagos lézernyomtató felbontása 600x1200 illetve 1200x1200 dpi körül van. Egy adott oldal szövegének megfelelő bitképet a dedikált számítógép belső memóriájában készíti el. Működési folyamata: Nyomtatók 23: Lézernyomtató 3

143 Készítette: Kőrössy Ildikó143 A lézersugár a kapott adatok alapján egy negatív töltésű forgódob felületére vetíti a kinyomtatandó képet. Azon területek, amelyeket a lézersugár letapogatott elvesztik negatív töltésük túlnyomó részét (majdnem semlegessé válnak). A festékkazettában (toner) levő szemcsés festékanyagot a nyomtató szintén negatív töltésűre tölti fel. Ezek a szemcsék a fenti dob azon részén fognak megtapadni, amelyen a lézersugár végigsöpört. Nyomtatók 24: Lézernyomtató 4

144 Készítette: Kőrössy Ildikó144 Az előbbi folyamattal párhuzamosan a nyomtató behúz egy lapot, melyet pozitív töltésre tölt fel. A vonzó elektromos (Coulomb-) kölcsönhatás miatt a papír magához vonzza a forgódobról a festékszemcséket, így a papír felületén kialakul a kép. Ezután a papír végighalad a nyomtató ún. fixáló részén, ahol felmelegítés hatására (kb. 200 Celsius-fok) a szemcsék megolvadnak és a nyomóhenger belepréseli a festéket a papírba. Nyomtatók 25: Lézernyomtató 5

145 Készítette: Kőrössy Ildikó145 Lehetséges a színes lézernyomtatás is. Működése az előbbihez hasonló, de ekkor a négy színnek négy szelénhenger felel meg, a lézernyaláb négyszer pásztáz végig. (CMYK-technológia.) Fontos! Az RGB monitor és a CMYK- technológiájú lézernyomtató nem pontosan ugyanolyan színárnyalatot ad. Nyomtatók 26: Lézernyomtató 6

146 Készítette: Kőrössy Ildikó146 A korszerűbb képmanipuláló grafikus programok (pl. Adobe Photoshop) képesek a színeket a lézernyomató által megjelenített árnyalatokkal megjeleníteni (a képernyőn). Egyes lézernyomtatóknál lehetőség van előre gyártott alakzatok betöltésére a nyomtató memóriájába, majd tényleges nyomtatáskor az illető alakzat, vagy objektum azonosítóját, méretét és koordinátáit fogja küldeni. Ennek a technikának az egyik gyakorlati megvalósítása a PostScript programozás. Nyomtatók 27: Lézernyomtató 7

147 Készítette: Kőrössy Ildikó147 nyomtatás elve A nyomtatók csoportosítása a nyomtatás elve szerint: az egyszerre kinyomtatott karakterek száma szerint: pontelvű nyomtató: a képet pontonként nyomtatja ki; karakternyomtató: betűnként nyomtatja a szöveget; sornyomtató: egyszerre egy sort nyomtat ki, miután a memóriájában összegyűjti az egy sorhoz tartozó információkat, és a kinyomtatandó karaktereket összegyűjti egy betűhengeren, vagy betűláncon; lapnyomtató: a nyomtatás előtt az egész laphoz tartozó információt összegyűjti a memóriájában, majd a teljes lapot nyomja ki. Nyomtatók 28

148 Készítette: Kőrössy Ildikó148 papírra kerülés módja A nyomtatók csoportosítása a papírra kerülés módja szerint: ütő: a kép kialakítása mechanikai érintés útján történik (pl. mátrixnyomtatók). Több példányban is nyomtathatnak. nem ütő: ezek a festéket a papír érintése nélkül juttatják a lapra (a nyomtatók többsége ebbe a csoportba tartozik). Egyszerre csak egy példányt tudnak nyomtatni. Nyomtatók 28

149 Készítette: Kőrössy Ildikó149 Gömbfejes nyomtató Az ütési elven működő nyomtatók közé tartozik. Szép a nyomtatási képe, de alacsony a sebessége. Margarétakerekes nyomtató Ütő nyomtató. Szép a képe de alacsony a sebessége. Nyomtatók 29: További típusai 1

150 Készítette: Kőrössy Ildikó150 Íróhengeres nyomtató Ütő elvű sornyomtató. Jellegzetesen erős hangja van, stabil, megbízható nyomtató, de a jelkészlet cseréje igen körülményes. Íróláncos nyomtató Ütő sornyomtató. Lassabb nyomtatás, de a betűk vízszintesen nem csúsznak el, a jelkészlet könnyen cserélhető. Nyomtatók 30: További típusai 2

151 Készítette: Kőrössy Ildikó151 Hőnyomtatók Nem ütő, pontelvű nyomtatók. Hőnyomtatók típusai Hőnyomtatók típusai: Hagyományos hőnyomtató Modern hőnyomtatók Nyomtatók31: További típusai 3

152 Készítette: Kőrössy Ildikó152 Elektrosztatikus nyomtatók Nem ütő nyomtatók csoportjába tartoznak. Elektrosztatikus nyomtatók típusai Elektrosztatikus nyomtatók típusai: Ionsugaras nyomtató Mágneses nyomtatók Nyomtatók 32: További típusai 4

153 Készítette: Kőrössy Ildikó153 Papírkezelés: külön lapokra vagy leporellóra nyomtat, van-e papíradagolója, s abba mennyi lap fér, képes-e A/3-as lapra, borítékra, fóliára nyomtatni. Nyomtatók 33

154 Készítette: Kőrössy Ildikó154 Csatlakozás a számítógéphez: soros porton át párhuzamos porton át (ez a leggyakoribb) infravörös porton át SCSI csatoló segítségével stb. Nyomtatók 34

155 Készítette: Kőrössy Ildikó155 Plotter (Rajzgép) Kiviteli periféria. Segítségével nagyobb méretű rajzlapokra műszaki rajz készíthető.

156 Készítette: Kőrössy Ildikó156 Karakternyomtató + nagyon jó szövegminőség - lassú - drága - hangos - grafika nem nyomtatható - korlátozott betűtípus

157 Készítette: Kőrössy Ildikó157 Mátrixnyomtató + gyors + olcsó + különböző betűtípusokkal tölthető + univerzálisan használható + grafika is nyomtatható + színes nyomtatás lehetősége + kielégítő nyomtatási minőség - hangos

158 Készítette: Kőrössy Ildikó158 Hőnyomtató + grafika nyomtatható + jó nyomtatási minőség + nagyon jó színes nyomtatási lehetőség - lassú - drága anyagfelhasználás - speciális festékek szükségesek

159 Készítette: Kőrössy Ildikó159 Tintasugaras nyomtató + gyors + olcsó + halk + grafika nyomtatható + jó minőség - drága tintapatronok - nem megfelelő használatnál zavarra hajlamos

160 Készítette: Kőrössy Ildikó160 Lézernyomtató + halk + felbontástól függően jó és nagyon jó minőség + grafika nyomtatható + gyors + PostScript-kezelés - magasabb beszerzési és nyomtatási költségek


Letölteni ppt "A számítógép felépítése. Készítette: Kőrössy Ildikó2 Számítógépek típusai 1 Mikroszámítógépek: Személyi számítógépek Mikroszámítógépek: Személyi számítógépek."

Hasonló előadás


Google Hirdetések