Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

EUTROFIZÁLÓDÁS (tavak) (6). SOMLYÓDY LÁSZLÓ Vízi Közmű és Környezetmérnöki Tanszék htp://vcst.bme.hu.

Hasonló előadás


Az előadások a következő témára: "EUTROFIZÁLÓDÁS (tavak) (6). SOMLYÓDY LÁSZLÓ Vízi Közmű és Környezetmérnöki Tanszék htp://vcst.bme.hu."— Előadás másolata:

1 EUTROFIZÁLÓDÁS (tavak) (6)

2 SOMLYÓDY LÁSZLÓ Vízi Közmű és Környezetmérnöki Tanszék htp://vcst.bme.hu

3 LIMNOLÓGIA (tótudomány) Tavak kialakulása TermészetesTermészetes Mesterséges (duzzasztógátak, (ivóvíz)tározók, halastavak, üdülőtavak, hűtőtavak stb.)Mesterséges (duzzasztógátak, (ivóvíz)tározók, halastavak, üdülőtavak, hűtőtavak stb.) Tavak jellemzői MorfológiaMorfológia VízháztartásVízháztartás Vízmozgás, áramlásokVízmozgás, áramlások Hőmérséklet és fényviszonyok,Hőmérséklet és fényviszonyok, Tápanyag ellátottságTápanyag ellátottság Kémiai jellemzők, sótartalomKémiai jellemzők, sótartalom

4 Tavak hidrológiája és morfológiája Alaktan és jellemző méretek hosszúságszélesség víztükörfelület (A) víztérfogat (V) Tartózkodási idő (feltöltődési, vízkicserélődési idő): Q Hígulás, megújulási sebesség: L Partvonal hosszúság (L) Partvonal tagoltság:

5 Tavak vízmérlege Befolyó – elfolyó + csapadék – párolgás  talajvíz Szabályozott tavak: Vízmérleg szerepe: Tartózkodási idő Sótartalom (lefolyástalan tavak) Tápanyag visszatartás (oldott és partikulált formák, szezonális változások)

6 Vízmozgások Aperiodikus áramlások: Aperiodikus áramlások: Szél ill. nyomáskülönbség hatására kialakuló áramlások Periodikus vízmozgások: Periodikus vízmozgások: Szél keltette hullámzás (függ: szélsebesség, meghajtási hossz, vízmélység) Tólengés (seiche): a szél hatására a víztömeg feltorlódik, majd a szél leálltával visszalendül (Balaton: hossz- és keresztirány) Üledék felkeveredés (áramlásból és a hullámmozgásból Üledék felkeveredés (áramlásból és a hullámmozgásból származó csúsztató feszültség idéz elő)  fény  biomassza származó csúsztató feszültség idéz elő)  fény  biomassza

7

8

9

10

11

12

13

14

15

16

17

18

19

20 Szélsebesség és hullámmozgás kapcsolata

21 Lebegőanyag koncentráció (Balaton)

22 Mély tavak EpilimnionMetalimnionHipolimnion Jellemzők: hőrétegzettség, időszakos cirkuláció (átfordulás), Függ: szél kinetikai energiája és a sűrűség különbségből adódó termális ellenállás (számítható!) Sekély tavak Fenékig átkevert Nincs hőrétegzettség!

23 - Sűrüség és átfordulás - Sekély/mély tó g/cm ºc

24 Hőmérsékleti viszonyok z Vertikális eloszlás (mérsékelt égöv) (C) T Nyár Tél Max. termikus gradiens Max. termikus gradiens Termikus ellenállás Termikus ellenállás

25 ALAPFOGALMAK ALAPFOGALMAK Eutrofizálódás: tápanyagfeldúsulás Természetes vs mesterséges Kronológia Kiváltó okok (főként P és N terhelések): vízgyűjtő Szennyvíz (közvetlen, közvetett) - pontszerűSzennyvíz (közvetlen, közvetett) - pontszerű Városi lefolyásVárosi lefolyás Mezőgazdaság - nem-pontszerű (csapadék)Mezőgazdaság - nem-pontszerű (csapadék) IparIpar Légköri kihullásLégköri kihullás Több nagyságrendnyi növekedés (elmúlt fél évszázad) Fontos természeti tényező: hőmérséklet, összes sugárzás

26 ALAPFOGALMAK (folyt.) ALAPFOGALMAK (folyt.)Okozatok „Algásodás”: esztétika (rekreáció), vízhasználatok„Algásodás”: esztétika (rekreáció), vízhasználatok Vízkezelés (pl. szűrők eltömődése)Vízkezelés (pl. szűrők eltömődése) Íz és szagÍz és szag Toxikus hatásokToxikus hatások Szervesanyag felhalmozódás  O 2Szervesanyag felhalmozódás  O 2 O 2 napszakos ingadozásO 2 napszakos ingadozás Makrofiták (bentikus eutrofizáció)Makrofiták (bentikus eutrofizáció)

27 FOTOSZINTÉZIS ÉS SZTÖCHIOMETRIA FOTOSZINTÉZIS ÉS SZTÖCHIOMETRIA 106 CO NO 3 + HPO H 2 O + 18 H + Nye  C 106 H 263 O 110 N 16 P O 2 CO 2 és szervetlen tápelemek  növényi protoplazma (fény, termelés vs légzés)CO 2 és szervetlen tápelemek  növényi protoplazma (fény, termelés vs légzés) C 106 H 263 O 110 N 16 P 1 :elemek aránya a sejtbenC 106 H 263 O 110 N 16 P 1 :elemek aránya a sejtben Liebig: 1o6 : 16 : 1 (moláris arány)Liebig: 1o6 : 16 : 1 (moláris arány) Redfield: felvétel és leadás aránya a fenti az óceánokbanRedfield: felvétel és leadás aránya a fenti az óceánokban Édesvizek hasonlóan viselkednek (tó specifikus)Édesvizek hasonlóan viselkednek (tó specifikus) A limitálás elve:A limitálás elve: - természeti körülmények - szabályozás

28 INDIKÁTOROK INDIKÁTOROK Elsődleges termelésElsődleges termelés AlgaszámAlgaszám BiomasszaBiomassza Chl-aChl-a ÖP, ÖNÖP, ÖN Fényviszonyok, átlátszóság (pl. Secchi mélység)Fényviszonyok, átlátszóság (pl. Secchi mélység) Fitoplankton összetételeFitoplankton összetétele

29 SZEZONÁLIS VÁLTOZÁSOK Természeti tényezők Emberi tevékenység Eredő hatás Nap 365 Sugárzás (I) I T Hőmérséklet (T) Terhelés Nap 365 Nap Biomassza 365

30 TAVAK OSZTÁLYOZÁSA (OECD; Chl-a - átlag/max) OligotrófMezotrófEutrófHipertróf ÖP (mg/m 3 ) >100 Chl-a (mg/m 3 ) 2.5/88/2525/75>25/>75 Secchi (m) 631.5<1.5 Hipol.O 2 tel.(%) 8010<10-

31 Időbeli változások (szukcesszió) Természetes: termőképesség (trofitás) növekedése (tápanyag dúsulás), feltöltődés, sótartalom növekedése (lefolyástalan tavak) OligotrófMezotróf Eutróf Mocsár Időlépték?

32 N/P ARÁNY SZEREPE Max  N Max  P N [mg/l] P [mg/l] idő b Chl-a [  g/l] idő Chl-a [  g/l] idő P [mg/l] idő a N [mg/l] idő

33 N/P ARÁNY: EGYSZERŰ BECSLÉS N/P ARÁNY: EGYSZERŰ BECSLÉS Alga sejt:  gP/  gChl-a  a PAlga sejt:  gP/  gChl-a  a P  gN/  gChl-a  a N  gN/  gChl-a  a N Példa: (a) N = 5 mg/l, a N = 10  Chl-a = 500  g/lPélda: (a) N = 5 mg/l, a N = 10  Chl-a = 500  g/l (b) P = 1 mg/l, a P = 1  Chl-a = 1000  g/l (b) P = 1 mg/l, a P = 1  Chl-a = 1000  g/l Szabályozás: Chl-a = 50  g/l (célállapot)Szabályozás: Chl-a = 50  g/l (célállapot) P = 50  g/l = 0.05 mg/l (??) P = 50  g/l = 0.05 mg/l (??) Általában, ha N/P < 10  N limitálÁltalában, ha N/P < 10  N limitál N/P > 10  P limitál N/P > 10  P limitál N/P  10  ??? N/P  10  ??? Mi limitál? Szennyvíz (nyers és tisztított)?Mi limitál? Szennyvíz (nyers és tisztított)? Mezőgazdasági diffúz? Mezőgazdasági diffúz? Vegyes? Vegyes? Mi tehető limitálóvá? Mi tehető limitálóvá? Fényviszonyok, átlátszóság (pl. Secchi mélység)Fényviszonyok, átlátszóság (pl. Secchi mélység) Fitoplankton összetételeFitoplankton összetétele

34 EGYSZERŰ ÖP MODELL: ÖP anyagmérleg Q be, L be V, A Q ki, ÖP ÖP vsvsvsvs P – összes P koncentráció (teljes elkeveredés) v s – látszólagos (eredő) ülepedési sebesség (m/év) Feltevések: - csak ÖP - teljes elkeveredés (szegmentálás) - teljes elkeveredés (szegmentálás) - évi átlag - évi átlag

35  0 0 0 0 Egy év alatt (évi átlag): Normalizált terhelés (évi átlag koncentráció) l – fajlagos ÖP terhelés (g/m 2 /év) - mind átlag q – fajlagos hidraulikai terhelés (m 3 /m 2 /év = m/év) P – éves átlagos P koncentráció (g/m 3 )

36 A Vollenweider féle statisztikus formula (1980) Sekély tavakra:

37

38

39 Tervezés empírikus összefüggések alapján ÖP terhelés Anyagmérleg számítás ÖP koncentráció P lChl P Max/átlag klorofill koncentráció Chl S Secchi mélység

40 EGYSZERŰ ÖP MODELL: előnyök, hátrányok EGYSZERŰ ÖP MODELL: előnyök, hátrányok EGYSZERŰ, GYORS, EGY PARAMÉTEREGYSZERŰ, GYORS, EGY PARAMÉTER ADATOK BECSÜLHETŐKADATOK BECSÜLHETŐK CSAK ÉVI ÁTLAG – „NAGY” TAVAKCSAK ÉVI ÁTLAG – „NAGY” TAVAK KÖZEL LINEÁRIS „VÁLASZ”. BELSŐ TERHELÉS 0.KÖZEL LINEÁRIS „VÁLASZ”. BELSŐ TERHELÉS 0. DINAMIKA? LIMITÁLÁS? FÉNY?DINAMIKA? LIMITÁLÁS? FÉNY? MINDIG A KEZDETI LÉPÉS!MINDIG A KEZDETI LÉPÉS!

41 „TÓ VÁLASZ” BELSŐ TERHELÉS NÉLKÜL Lineáris szakasz Telítési szakasz BIOMASSZA TERHELÉSP

42 BELSŐ TERHELÉS BELSŐ TERHELÉS L = L K + L BL = L K + L B MÓDOSÍTOTT VOLLENWEIDERMÓDOSÍTOTT VOLLENWEIDER HA L K  ÖP  VÉGES ÉRTÉK, NEM ZÉRUS (RÖVID TÁV)HA L K  ÖP  VÉGES ÉRTÉK, NEM ZÉRUS (RÖVID TÁV) ÜLEDÉK FELÚJULÁS (HOSSZÚ TÁV)ÜLEDÉK FELÚJULÁS (HOSSZÚ TÁV)

43 „TÓ VÁLASZ” BELSŐ TERHELÉS NÉLKÜL Lineáris szakasz Telítési szakasz BIOMASSZA TERHELÉSP

44 AZ ÖP MODELL ALKALMAZÁS LÉPÉSEI AZ ÖP MODELL ALKALMAZÁS LÉPÉSEI ALKALMAZÁSI FELTÉTELEK?ALKALMAZÁSI FELTÉTELEK? ALAPPARAMÉTEREK (vízháztartás stb.)ALAPPARAMÉTEREK (vízháztartás stb.) TERHELÉS BECSLÉSE (lásd később)TERHELÉS BECSLÉSE (lásd később) FAJLAGOS ÉRTÉKEKFAJLAGOS ÉRTÉKEK JELEN ÁLLAPOTJELEN ÁLLAPOT CÉLÁLLAPOT (ÖP VAGY CHL-A)CÉLÁLLAPOT (ÖP VAGY CHL-A) MEGENGEDETT ÖP TERHELÉSMEGENGEDETT ÖP TERHELÉS HOGYAN ÉRJÜK EL ÉS MENNYIÉRT?HOGYAN ÉRJÜK EL ÉS MENNYIÉRT?

45 Terhelés és a nem-pontszerű szennyezés folyamatai

46 SZABÁLYOZÁS Emisszió forrás Transzport a víz- gyűjtőn (visszatartás) Transzport (visszatartás) a folyómederben Tavi tápanyag forgalom Kibocsátás csökk., szennyvíz („end of pipe”); „best management practice”, ár, adó, területhasználat szabályozása Lefolyási tényező csökkentése, erózióvédelem, művelés, előtározók, „wetland”-ek kialakítása Hordalék- és uszadékfogók, fenéklépcső, levegőztetés, ökológiai szemléletű mederrendezés, előtározók Üledék kotrása, inaktiválása, biomanipuláció, vízpótlás, mély tavak levegőztetése, algicid

47 SZABÁLYOZÁS ALAPEGYSÉGE:VÍZGYŰJTŐ 

48 VÍZGYŰJTŐRŐL SZÁRMAZÓ TERHELÉSEK L1L1 L2L2 L3L3 L4L4 L 111 L211L211 L11L11 L12L12 L 21 L 22 L 31 L 3 = (L 4 + L 31 +  E 3 ) a 3 L 21 = (L 22 + L  E 21 ) a 21 L 2 = (L 3 + L 21 +  E 2 ) a 2 L 11 = (L 12 + L  E 11 ) a 11 L 1 = (L 2 + L 21 ) a 1 L i – mért terhelés (anyagáram) – ellenőrzési pontok E i – vízgyűjtőről származó terhelés (emisszió) E2E2 E3E3 E 11 E 21 a i – átviteli tényező (transzmisszió)(1-a = visszatartás a mederben)

49 FAJLAGOS TERHELÉSEK (kg/ha/y): ÖP FAJLAGOS TERHELÉSEK (kg/ha/y): ÖP MEZŐGAZDASÁG: 0.5 (0.1 – 5)MEZŐGAZDASÁG: 0.5 (0.1 – 5) VÁROSI LEFOLYÁS: 1.0 (0.1 / 10)VÁROSI LEFOLYÁS: 1.0 (0.1 / 10) ATMOSZFÉRA: 0.5 (0.1 – 1.0)ATMOSZFÉRA: 0.5 (0.1 – 1.0) ERDŐ: 0.4 (0.01 – 1.0)ERDŐ: 0.4 (0.01 – 1.0) ÖN: HASONLÓANÖN: HASONLÓAN BIZONYTALANSÁGOKBIZONYTALANSÁGOK

50 Fajlagos területi terhelés jellemző értékei (kg/ha/y) TerülethasználatKOIÖNÖPN/PForrás Mezőgazdasági terület Legelő Erdő Szőlő, gyümölcsös Városi terület VITUKI, 1996, 2. Jolánkai, 1984, 3. JICA, 1998

51 BOIÖNÖP Szarvasmarha Tejelő tehén Sertés3512 Ló6110 Birka3.21 Baromfi Haszonállatok fajlagos emissziói (kg/egyed/nap)

52 A számítás korlátai: Ellenőrzési pontokon mért anyagáram mintavételi hibája (mintavételi gyakoriság, analitikai módszer, stb.)Ellenőrzési pontokon mért anyagáram mintavételi hibája (mintavételi gyakoriság, analitikai módszer, stb.) Átviteli tényező ismeretlen – vízminőségi modell!Átviteli tényező ismeretlen – vízminőségi modell! Pontszerű terhelések: becslés (lakosegyenérték), mérésPontszerű terhelések: becslés (lakosegyenérték), mérés Diffúz terhelés: területi jellemzők, irodalmi adatok (fajlagos területi terhelés), modell – időbeli változékonyság, bizonyatlan!Diffúz terhelés: területi jellemzők, irodalmi adatok (fajlagos területi terhelés), modell – időbeli változékonyság, bizonyatlan! Visszatartás a vízgyűjtőn (transzmissziós tényező): mérés? becslés? empíria?Visszatartás a vízgyűjtőn (transzmissziós tényező): mérés? becslés? empíria?

53 A TERHELÉS BECSLÉS LÉPÉSEI A TERHELÉS BECSLÉS LÉPÉSEI VÁROSI, PONTSZERŰVÁROSI, PONTSZERŰ NEM-PONTSZERŰNEM-PONTSZERŰ KÖZVETLEN, KÖZVETETTKÖZVETLEN, KÖZVETETT FAJLAGOS ÉRTÉKEKFAJLAGOS ÉRTÉKEK VISSZATARTÁSVISSZATARTÁS MÉRÉSEK, „GÖNGYÖLÍTÉS”, ELLENŐRZÉSMÉRÉSEK, „GÖNGYÖLÍTÉS”, ELLENŐRZÉS BEAVATKOZÁSOK HATÁSABEAVATKOZÁSOK HATÁSA MODELLEZÉSMODELLEZÉS

54 5776 km2 596 km2

55 53% 31% 10% 6%

56 75mg/m3 18mg/m3 12mg/m3 10mg/m3

57

58

59

60

61

62 KIS-BALATON: FELSŐ TÁROZÓ EGYSZERŰANYAGMÉRLEG

63 Balaton Zala Zalaegerszeg Kis-Balaton

64 Felsô Tározó A = 18 km 2 Alsó Tározó A  50 km 2 Felsô Tározó A = 18 km 2

65 ÖP visszatartás a Kis-Balaton Felső Tározóban  P tervezett = f (P be, Q be, v s ) /Vollenweider/ ?

66 TP be (t/y) TP ki (t/y) ~30 t/y Befolyó és kifolyó ÖP terhelés kapcsolata Be Ki

67 PP P Belső P + P BELSŐ = ÖSSZES NETTÓ ÜLEPEDÉS  P + P BELSŐ = ÖSSZES NETTÓ ÜLEPEDÉS

68 ORP Alga P felvétel Mineralizáció Külső terhelés “adszorpció” 1988 Alga P felvétel 1992 “deszorpció” Külső terhelés Mineralizáció

69 BALATON: TERHELÉS ÉS TROFITÁS KAPCSOLATA

70 Fényintenzitás vertikális eloszlása: Lambert törvény Hőmérséklet és fény z I I0I0I0I0 1%: fotikus zóna z T Hőmérséklet vertikális eloszlása (C) Nyár Tél Hőrétegzettség (mély tavak) T (C)  4 C Max. termikus gradiens Termikus ellenállás

71 Emisszió (források) Tavat érő terhelés Visszatartás a vízgyűjtőn Tóvíz minőség ?? Visszatartás a tóban EGYSZERŰ ÖP MODELL: ÖP anyagmérleg Q be, L be V, A Q ki, ÖP ÖP vsvsvsvs P – összes P koncentráció (teljes elkeveredés) v s – látszólagos (eredő) ülepedési sebesség (m/év)

72 Terhelés számítása: L i – Anyagáram az i-dik ellenőrzési ponton m – mellékfolyók száma az i-dik szakaszon E – az i-dik szakaszt érő vízgyűjtő eredetű terhelés (emisszió) j – emissziós források száma az i-dik szakaszon a – az i-dik szakaszon érvényes átviteli tényező L p – pontszerű szennyezőforrás (t/év)  p – pontszerű forrás transzmissziós tényezője (-) L np – diffúz szennyezőforrrás (t/év) L – fajlagos területi terhelés (t/ha,év) A – a fajlagos terheléshez tartozó vízgyűjtőterület (ha)  np – diffúz terhelés transzmissziós tényezője (-) ( 1-  = visszatartás a vízgyűjtőn)

73 Vollenweider modell előnyei: Egyszerű Tervezés, előrejelzés Hosszú távú átlagok A modell alkalmazási korlátai: Éves átlagok – több éves adatsor Egy paraméter (v s ) – aggregált jellemző (P forgalmat befolyásoló összes hatást összegzi) Empíria Szezonális változásokat nem tudja kezelni Fény, vízmélység (fotikus zóna) szerepe nem jelenik meg Belső terhelés hiánya

74 SZEZONÁLIS VÁLTOZÁSOK Természeti tényezők Emberi tevékenység Eredő hatás Nap 365 Sugárzás (I) I T Hőmérséklet (T) Terhelés Nap 365 Nap Biomassza 365

75 N/P ARÁNY SZEREPE Max  N Max  P N [mg/l] P [mg/l] idő b Chl-a [  g/l] idő Chl-a [  g/l] idő P [mg/l] idő a N [mg/l] idő

76 „TÓ VÁLASZ” BELSŐ TERHELÉS NÉLKÜL Lineáris szakasz Telítési szakasz BIOMASSZA TERHELÉSP


Letölteni ppt "EUTROFIZÁLÓDÁS (tavak) (6). SOMLYÓDY LÁSZLÓ Vízi Közmű és Környezetmérnöki Tanszék htp://vcst.bme.hu."

Hasonló előadás


Google Hirdetések